|
import gradio as gr |
|
|
|
from transformers import AutoModelForSequenceClassification |
|
from transformers import TFAutoModelForSequenceClassification |
|
from transformers import AutoTokenizer, AutoConfig |
|
import numpy as np |
|
from scipy.special import softmax |
|
|
|
|
|
|
|
|
|
model_path = f"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis" |
|
tokenizer = AutoTokenizer.from_pretrained('mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis') |
|
config = AutoConfig.from_pretrained(model_path) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path) |
|
|
|
|
|
def preprocess(text): |
|
new_text = [] |
|
for t in text.split(" "): |
|
t = '@user' if t.startswith('@') and len(t) > 1 else t |
|
t = 'http' if t.startswith('http') else t |
|
new_text.append(t) |
|
return " ".join(new_text) |
|
|
|
|
|
def sentiment_analysis(text): |
|
text = preprocess(text) |
|
|
|
|
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
scores_ = output[0][0].detach().numpy() |
|
scores_ = softmax(scores_) |
|
|
|
|
|
labels = ['Negative😢😢', 'Neutral', 'Positive😃😃'] |
|
scores = {l:float(s) for (l,s) in zip(labels, scores_) } |
|
|
|
return scores |
|
|
|
welcome_message = "Welcome to Team Paris tweets first shot Sentimental Analysis App 😃 😃 😃 😃 " |
|
demo = gr.Interface( |
|
fn=sentiment_analysis, |
|
inputs=gr.Textbox(placeholder="Write your tweet here..."), |
|
outputs="label", |
|
interpretation="default", |
|
examples=[["This is wonderful!"]], |
|
title=welcome_message, |
|
description=("This is a sentimental analysis app built by fine tuning a model trained on financial news sentiment, we leverage what the model has learnt, /n, and fine tune it on twitter comments . The eval_loss of our model is 0.785") |
|
) |
|
demo.launch() |
|
|
|
|
|
|
|
|
|
|