Spaces:
Runtime error
Runtime error
# pip install scikit-learn | |
# | |
import gradio as gr | |
import pandas as pd | |
import pickle | |
# from sklearn.pipeline import Pipeline | |
# from sklearn.ensemble import RandomForestClassifier | |
# from sklearn.preprocessing import StandardScaler, LabelEncoder | |
# from sklearn.impute import SimpleImputer | |
# from imblearn.over_sampling import RandomOverSampler | |
# from sklearn.preprocessing import FunctionTransformer | |
# import joblib | |
xtrain= pd.read_csv('Xtrains.csv') | |
ytrain=pd.read_csv('Ytrains.csv') | |
# Loading Models | |
with open("model.pkl", "rb") as f: | |
clf = pickle.load(f) | |
clf.fit(xtrain, ytrain.values.ravel()) | |
tenure_labels = { | |
0: "3-6 months", | |
1: "6-9 months", | |
2: "9-12 months", | |
3: "12-15 months", | |
4: "15-18 months", | |
5: "18-21 months", | |
6: "21-24 months", | |
7: "> 24 months" | |
} | |
# Reverse the mapping for predictions | |
tenure_values = {v: k for k, v in tenure_labels.items()} | |
def predict(tenure, montant, freq_rech, revenue, arpu, freq, data_vol, on_net, orange, tigo, freq_top_pack, regularity): | |
tenure_value = tenure_values[tenure] | |
input_df = pd.DataFrame({ | |
'TENURE': [tenure_value], | |
'MONTANT': [montant], | |
'FREQUENCE_RECH': [freq_rech], | |
'REVENUE': [revenue], | |
'ARPU_SEGMENT': [arpu], | |
'FREQUENCE': [freq], | |
'DATA_VOLUME': [data_vol], | |
'ON_NET': [on_net], | |
'ORANGE': [orange], | |
'TIGO': [tigo], | |
'REGULARITY':[regularity], | |
'FREQ_TOP_PACK': [freq_top_pack] | |
}) | |
prediction = clf.predict(input_df) | |
churn_label = "Customer will churn" if prediction == 1 else "Customer will not churn" | |
result = { | |
'text': churn_label, # Use the churn label as 'text' | |
'entities': [] # You can leave 'entities' as an empty list if no entities need highlighting | |
} | |
print(result) | |
return result | |
# Create a dropdown menu with labels | |
tenure_dropdown = gr.inputs.Dropdown(list(tenure_labels.values()), label="TENURE") | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
tenure_dropdown, # Dropdown instead of slider | |
#gr.inputs.Slider(minimum=1, maximum=7, label="TENURE"), | |
gr.inputs.Slider(minimum=20, maximum=470000, label="MONTANT"), | |
gr.inputs.Slider(minimum=1, maximum=131, label="FREQUENCE_RECH"), | |
gr.inputs.Slider(minimum=1, maximum=530000, label="REVENUE"), | |
gr.inputs.Slider(minimum=0, maximum=2453, label="ARPU_SEGMENT"), | |
gr.inputs.Slider(minimum=1, maximum=91, label="FREQUENCE"), | |
gr.inputs.Slider(minimum=1, maximum=1702309, label="DATA_VOLUME"), | |
gr.inputs.Slider(minimum=0, maximum=51000, label="ON_NET"), | |
gr.inputs.Slider(minimum=0, maximum=12040, label="ORANGE"), | |
gr.inputs.Slider(minimum=0, maximum=4174, label="TIGO"), | |
gr.inputs.Slider(minimum=0, maximum=624, label="FREQ_TOP_PACK"), | |
gr.inputs.Slider(minimum=0, maximum=62, label="REGULARITY") | |
], | |
outputs=output, | |
title="Team Paris Customer Churn Prediction App", | |
description="Let's Get Started With Some Predictions!" | |
) | |
iface.launch() | |