|
|
|
import json |
|
import subprocess |
|
from threading import Thread |
|
|
|
import torch |
|
import spaces |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer |
|
|
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
MODEL_ID = "nikravan/Marco_o1_q4" |
|
CHAT_TEMPLATE = "ChatML" |
|
MODEL_NAME = MODEL_ID.split("/")[-1] |
|
CONTEXT_LENGTH = 16000 |
|
|
|
|
|
COLOR = "blue" |
|
EMOJI = "🤖" |
|
DESCRIPTION = f"This is the {MODEL_NAME} model designed for testing thinking for general AI tasks." |
|
|
|
latex_delimiters_set = [{ |
|
"left": "\\(", |
|
"right": "\\)", |
|
"display": False |
|
}, { |
|
"left": "\\begin{equation}", |
|
"right": "\\end{equation}", |
|
"display": True |
|
}, { |
|
"left": "\\begin{align}", |
|
"right": "\\end{align}", |
|
"display": True |
|
}, { |
|
"left": "\\begin{alignat}", |
|
"right": "\\end{alignat}", |
|
"display": True |
|
}, { |
|
"left": "\\begin{gather}", |
|
"right": "\\end{gather}", |
|
"display": True |
|
}, { |
|
"left": "\\begin{CD}", |
|
"right": "\\end{CD}", |
|
"display": True |
|
}, { |
|
"left": "\\[", |
|
"right": "\\]", |
|
"display": True |
|
}] |
|
|
|
|
|
@spaces.GPU() |
|
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): |
|
|
|
if CHAT_TEMPLATE == "Auto": |
|
stop_tokens = [tokenizer.eos_token_id] |
|
instruction = system_prompt + "\n\n" |
|
for user, assistant in history: |
|
instruction += f"User: {user}\nAssistant: {assistant}\n" |
|
instruction += f"User: {message}\nAssistant:" |
|
elif CHAT_TEMPLATE == "ChatML": |
|
stop_tokens = ["<|endoftext|>", "<|im_end|>"] |
|
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' |
|
for user, assistant in history: |
|
instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n' |
|
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n' |
|
elif CHAT_TEMPLATE == "Mistral Instruct": |
|
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "] |
|
instruction = f'<s>[INST] {system_prompt}\n' |
|
for user, assistant in history: |
|
instruction += f'{user} [/INST] {assistant}</s>[INST]' |
|
instruction += f' {message} [/INST]' |
|
else: |
|
raise Exception("Incorrect chat template, select 'Auto', 'ChatML' or 'Mistral Instruct'") |
|
print(instruction) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) |
|
input_ids, attention_mask = enc.input_ids, enc.attention_mask |
|
|
|
if input_ids.shape[1] > CONTEXT_LENGTH: |
|
input_ids = input_ids[:, -CONTEXT_LENGTH:] |
|
attention_mask = attention_mask[:, -CONTEXT_LENGTH:] |
|
|
|
generate_kwargs = dict( |
|
input_ids=input_ids.to(device), |
|
attention_mask=attention_mask.to(device), |
|
streamer=streamer, |
|
do_sample=True, |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_k=top_k, |
|
repetition_penalty=repetition_penalty, |
|
top_p=top_p |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
outputs = [] |
|
for new_token in streamer: |
|
outputs.append(new_token) |
|
if new_token in stop_tokens: |
|
break |
|
yield "".join(outputs) |
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
device_map="auto", |
|
quantization_config=quantization_config, |
|
attn_implementation="flash_attention_2", |
|
) |
|
|
|
|
|
gr.ChatInterface( |
|
predict, |
|
title=EMOJI + " " + MODEL_NAME, |
|
description=DESCRIPTION, |
|
|
|
|
|
|
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), |
|
additional_inputs=[ |
|
gr.Textbox("You are a code assistant.", label="System prompt"), |
|
gr.Slider(0, 1, 0.3, label="Temperature"), |
|
gr.Slider(128, 4096, 1024, label="Max new tokens"), |
|
gr.Slider(1, 80, 40, label="Top K sampling"), |
|
gr.Slider(0, 2, 1.1, label="Repetition penalty"), |
|
gr.Slider(0, 1, 0.95, label="Top P sampling"), |
|
], |
|
theme=gr.themes.Soft(primary_hue=COLOR), |
|
).queue().launch() |
|
|
|
|