Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from llama_cpp import Llama | |
from datasets import load_metric | |
pipe = pipeline("text-generation", model="varma007ut/Indian_Legal_Assitant") | |
prompt = "Summarize the key points of the Indian Contract Act, 1872:" | |
result = pipe(prompt, max_length=200) | |
print(result[0]['generated_text']) | |
tokenizer = AutoTokenizer.from_pretrained("varma007ut/Indian_Legal_Assitant") | |
model = AutoModelForCausalLM.from_pretrained("varma007ut/Indian_Legal_Assitant") | |
prompt = "What are the fundamental rights in the Indian Constitution?" | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=200) | |
print(tokenizer.decode(outputs[0])) | |
llm = Llama.from_pretrained( | |
repo_id="varma007ut/Indian_Legal_Assitant", | |
filename="ggml-model-q4_0.gguf", # Replace with the actual GGUF filename if different | |
) | |
response = llm.create_chat_completion( | |
messages = [ | |
{ | |
"role": "user", | |
"content": "Explain the concept of judicial review in India." | |
} | |
] | |
) | |
print(response['choices'][0]['message']['content']) | |
bleu = load_metric("bleu") | |
predictions = model.generate(encoded_input) | |
results = bleu.compute(predictions=predictions, references=references) |