# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
# import gradio as gr | |
# def fake(message, history): | |
# if message.strip(): | |
# # Instead of returning audio directly, return a message | |
# return "Playing sample audio...", gr.Audio("https://github.com/gradio-app/gradio/raw/main/test/test_files/audio_sample.wav") | |
# else: | |
# return "Please provide the name of an artist", None | |
# with gr.Blocks() as demo: | |
# chatbot = gr.Chatbot(placeholder="Play music by any artist!") | |
# textbox = gr.Textbox(placeholder="Which artist's music do you want to listen to?", scale=7) | |
# audio_player = gr.Audio() | |
# def chat_interface(message, history): | |
# response, audio = fake(message, history) | |
# return history + [(message, response)], audio | |
# textbox.submit(chat_interface, [textbox, chatbot], [chatbot, audio_player]) | |
# demo.launch() | |
# import random | |
# def random_response(message, history): | |
# return random.choice(["Yes", "No"]) | |
# gr.ChatInterface(random_response).launch() | |
# import gradio as gr | |
# def yes_man(message, history): | |
# if message.endswith("?"): | |
# return "Yes" | |
# else: | |
# return "Ask me anything!" | |
# gr.ChatInterface( | |
# yes_man, | |
# chatbot=gr.Chatbot(placeholder="<strong>Ask me a yes or no question</strong><br>Ask me anything"), | |
# textbox=gr.Textbox(placeholder="Ask me a yes or no question", container=False, scale=15), | |
# title="Yes Man", | |
# description="Ask Yes Man any question", | |
# theme="soft", | |
# examples=[{"text": "Hello"}, {"text": "Am I cool?"}, {"text": "Are tomatoes vegetables?"}], | |
# cache_examples=True, | |
# retry_btn=None, | |
# undo_btn="Delete Previous", | |
# clear_btn="Clear", | |
# ).launch() | |
# below code is not working | |
# import gradio as gr | |
# def count_files(files): | |
# num_files = len(files) | |
# return f"You uploaded {num_files} file(s)" | |
# with gr.Blocks() as demo: | |
# with gr.Row(): | |
# chatbot = gr.Chatbot() | |
# file_input = gr.Files(label="Upload Files") | |
# file_input.change(count_files, inputs=file_input, outputs=chatbot) | |
# demo.launch() | |
# new code | |
from langchain.chat_models import ChatOpenAI | |
from langchain.schema import AIMessage, HumanMessage | |
import openai | |
import gradio as gr | |
os.environ["OPENAI_API_KEY"] = "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" # Replace with your key | |
llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613') | |
def predict(message, history): | |
history_langchain_format = [] | |
for msg in history: | |
if msg['role'] == "user": | |
history_langchain_format.append(HumanMessage(content=msg['content'])) | |
elif msg['role'] == "assistant": | |
history_langchain_format.append(AIMessage(content=msg['content'])) | |
history_langchain_format.append(HumanMessage(content=message)) | |
gpt_response = llm(history_langchain_format) | |
return gpt_response.content | |
gr.ChatInterface(predict).launch() |