import streamlit as st import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer from sklearn.ensemble import RandomForestClassifier import joblib import warnings warnings.filterwarnings('ignore') st.set_page_config(page_title='Product Type Predictor') st.title('Detect Product Type') st.subheader('Upload your CSV file') uploaded_file = st.file_uploader('Choose a CSV file', type='csv') if uploaded_file is not None: st.markdown('---') # Loading the data @st.cache_data def load_excel(file1): df = pd.read_csv(file1) return df data = load_excel(uploaded_file) st.subheader('Data Preview') st.dataframe(data.head(20)) # Feature selection features = ['a_ApplicableMarkets', 'Manufacturing Plant','Number of Unique Finished Packs in BOM', 'Total Number of Finished Packs in BOM', 'GMN', 'Product_Description', 'EA_GTIN', 'CV_GTIN', 'Product_Hierarchy_Code', 'Product_Hierarchy_Units_Per_Pack_L8', 'myPSR_Pack_Variant', 'Stibo_Pack_variant'] df = data[features] df['Manufacturing Plant'] = df['Manufacturing Plant'].replace({'Commerical Plant':'Commercial Plant'}) df['Stibo_Pack_variant'] = df['Stibo_Pack_variant'].replace({'Migration Open Stock':'Migration OpenStock'}) df = df.replace(np.nan, 0, regex=True) df['EA_GTIN'] = df['EA_GTIN'].astype(str) df['CV_GTIN'] = df['CV_GTIN'].astype(str) def GTIN_validity(x): gtin=str(x) if x=="0.0": return False if x: gtin=gtin[:-2] original_digits = [int(x) for x in gtin] digits_without_check_digit = original_digits[:-1] digits_without_check_digit.reverse() multiplied_digits = [x*3 if not i%2 else x for i,x in enumerate(digits_without_check_digit)] digits_sum = sum(multiplied_digits) if (digits_sum % 10): uprounded_sum = digits_sum + (10 - digits_sum % 10) else: uprounded_sum = digits_sum expected_check_digit = uprounded_sum - digits_sum return (original_digits[-1] == expected_check_digit) df['EA_GTIN_valid']=df.apply(lambda x: GTIN_validity(x['EA_GTIN']),axis=1) df['CV_GTIN_valid']=df.apply(lambda x: GTIN_validity(x['CV_GTIN']),axis=1) text_cols = ['a_ApplicableMarkets', 'Manufacturing Plant', 'Product_Hierarchy_Units_Per_Pack_L8', 'myPSR_Pack_Variant', 'Stibo_Pack_variant'] df = pd.get_dummies(data=df, columns=text_cols) v = CountVectorizer() text_vectors = v.fit_transform(df['Product_Description']) text_vectors_df = pd.DataFrame(text_vectors.toarray(), columns=v.get_feature_names_out()) df_ext = pd.concat([df, text_vectors_df],axis=1) df = df_ext.drop(['GMN','Product_Description','EA_GTIN','CV_GTIN'],axis=1) loaded_model = joblib.load(open('rfc_model_grid.sav', 'rb')) result = loaded_model.predict(df) data['Product_Type_Predicted']=result out=data.to_csv().encode('utf-8') st.download_button(label='DOWNLOAD RESULT',data=out, file_name='Product_Type_Output.csv',mime='csv')