|
import gradio as gr |
|
from transformers import RobertaForQuestionAnswering |
|
from transformers import BertForQuestionAnswering |
|
from transformers import AutoTokenizer |
|
from transformers import pipeline |
|
import soundfile as sf |
|
import torch |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import sox |
|
import subprocess |
|
|
|
|
|
def read_file_and_process(wav_file): |
|
filename = wav_file.split('.')[0] |
|
filename_16k = filename + "16k.wav" |
|
resampler(wav_file, filename_16k) |
|
speech, _ = sf.read(filename_16k) |
|
inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
return inputs |
|
|
|
|
|
def resampler(input_file_path, output_file_path): |
|
command = ( |
|
f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn " |
|
f"{output_file_path}" |
|
) |
|
subprocess.call(command, shell=True) |
|
|
|
|
|
def parse_transcription(logits): |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) |
|
return transcription |
|
|
|
|
|
def parse(wav_file): |
|
input_values = read_file_and_process(wav_file) |
|
with torch.no_grad(): |
|
logits = model(**input_values).logits |
|
user_question = parse_transcription(logits) |
|
return user_question |
|
|
|
|
|
model_id = "jonatasgrosman/wav2vec2-large-xlsr-53-persian" |
|
processor = Wav2Vec2Processor.from_pretrained(model_id) |
|
model = Wav2Vec2ForCTC.from_pretrained(model_id) |
|
|
|
model1 = RobertaForQuestionAnswering.from_pretrained("pedramyazdipoor/persian_xlm_roberta_large") |
|
tokenizer1 = AutoTokenizer.from_pretrained("pedramyazdipoor/persian_xlm_roberta_large") |
|
|
|
|
|
roberta_large = pipeline(task='question-answering', model=model1, tokenizer=tokenizer1) |
|
|
|
def Q_A(text=None, audio=None, context): |
|
if text is None: |
|
question = parse(audio) |
|
elif audio is None: |
|
question = text |
|
answer_pedram = roberta_large({"question":question, "context":context})['answer'] |
|
return answer_pedram |
|
|
|
|
|
|
|
|
|
title = "Question and answer based on Roberta model develop by nima asl toghiri" |
|
description = "سیستم پردازش زبانی پرسش و پاسخ" |
|
article = "آموزش داده شده با مدل زبانی روبرتا" |
|
|
|
|
|
demo = gr.Interface(fn=Q_A, |
|
inputs=[gr.Textbox(label='پرسش خود را وارد کنید:', show_label=True, text_align='right', lines=2), |
|
gr.Audio(source="microphone", type="filepath", |
|
label="لطفا دکمه ضبط صدا را بزنید و شروع به صحبت کنید و بعذ از اتمام صحبت دوباره دکمه ضبط را فشار دهید.", |
|
show_download_button=True, |
|
show_edit_button=True,), |
|
gr.Textbox(label='متن منبع خود را وارد کنید', show_label=True, text_align='right', lines=8)], |
|
outputs=gr.Text(show_copy_button=True), |
|
|
|
|
|
title=title, |
|
description=description, |
|
article=article) |
|
|
|
|
|
demo.launch(share=True) |