from pathlib import Path import google.generativeai as genai import re from PIL import Image import os #from google.colab import userdata #os.environ['GOOGLE_API_KEY'] = userdata.get('GOOGLE_API_KEY') #GOOGLE_API_KEY = os.environ['GOOGLE_API_KEY'] #genai.configure(api_key=os.environ["GOOGLE_API_KEY"]) #or use this for personal notebook genai.configure(api_key="AIzaSyD----") # Configuration for our Gemini Models textgeneration_config = { "temperature": 0.9, "top_p": 1, "top_k": 1, "max_output_tokens": 2048,} visiongeneration_config = { "temperature": 0.9, "top_p": 1, "top_k": 10, "max_output_tokens": 1024, } safety_settings = [ { "category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE" }, { "category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE" }, { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE" }, { "category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE" }, ] # Two models - vision and text textmodel = genai.GenerativeModel('gemini-1.0-pro', generation_config=textgeneration_config, safety_settings=safety_settings) #imagemodel = genai.GenerativeModel('gemini-pro-vision') visionmodel = genai.GenerativeModel(model_name="gemini-1.0-pro-vision-latest", generation_config=visiongeneration_config, safety_settings=safety_settings) # Utility Functions # Convert an image to base64 string format import base64 def img2base64(image): with open(image, 'rb') as img: encoded_string = base64.b64encode(img.read()) return encoded_string.decode('utf-8') # Check image format and display user messages in GUI def user_inputs(history, txt, img): if not img: history += [(txt, None)] return history # Open the image for format verification try: with Image.open(img) as image: # Get image format (e.g., PNG, JPEG) image_format = image.format.upper() except (IOError, OSError): return history if image_format not in ('JPEG','JPG','PNG'): print(f"Warning: Unsupported image format: {image_format}") return history base64 = img2base64(img) data_url = f"data:image/{image_format.lower()};base64,{base64}" history += [(f"{txt} ![]({data_url})", None)] import gradio as gr TITLE = """

Your Personal Health Coach

""" SUBTITLE = """

Upload an image of your food to knows its calories, macronutrients or ask questions about heath and exercise.

""" DES = """
You need to enter your FREE GEMINI KEY in the first text box to connect to Gemini Models. You can find your key here: GOOGLE API KEY.

If you wish to ask a question unrelated to the image you have uploaded, just cross the image (top right corner of image) and then submit your question in the textbox.
""" def generate_model_response(api_key, history, text, img): genai.configure(api_key=api_key) if not img: text = "You are an expert nutritionist and fitness coach. You are accurate, you always stick to the facts, and never make up new facts. \ For the questions asked by the user, answer accurately and to the point, in a friendly tone." + text response = textmodel.generate_content(text) else: text = "From the image uploaded by the user answer with following information: Food items in the image, \ percentage of each macronutrient in the food in image and approximate number of calories in the food in image. If there is any additional question, answer that too." + text img = Image.open(img) response = visionmodel.generate_content([text,img]) history += [(None, response.text)] return history with gr.Blocks() as app: gr.HTML(TITLE) gr.HTML(SUBTITLE) gr.HTML(DES) api_key_box = gr.Textbox(placeholder = "Enter your GEMINI API KEY", label="Your GEMINI API KEY", type="password") with gr.Row(): image_box = gr.Image(type="filepath") chatbot = gr.Chatbot( scale=3, height=750 ) text_box = gr.Textbox( placeholder="Ask something about the image your uploaded or ask for any health and fitness advice without uploading an image too", container=False, ) btn = gr.Button("Submit") btn_clicked = btn.click(user_inputs, [chatbot, text_box, image_box], chatbot).then(generate_model_response,[api_key_box, chatbot, text_box, image_box], chatbot) app.queue() app.launch(debug=True)