PDFChatbot / app.py
nirmalaag's picture
Update app.py
addd4ac verified
raw
history blame
2.97 kB
import streamlit as st
from PIL import Image
from dotenv import load_dotenv
from streamlit_extras.add_vertical_space import add_vertical_space
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import chroma
#from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
from langchain_community.llms import huggingface_hub
from langchain.document_loaders.pdf import PyMuPDFLoader
#from transformers import AutoTokenizer, AutoModelForCausalLM
#from langchain.llms import huggingface_endpoint
#import os
#import fitz
#import tempfile
img = Image.open('image/nexio_logo1.png')
st.set_page_config(page_title="PDF Chatbot App",page_icon=img,layout="centered")
with st.sidebar:
st.title('πŸ€– AI PDF Chatbot πŸ’¬')
st.markdown('''
## About
This app is an AI chatbot for the PDF files
''')
add_vertical_space(12)
st.write('Powered by ')
st.image(image='image/nexio_logo2.png',width=150)
# load huggingface API key .env file
load_dotenv()
def main():
st.header("Chat with PDF πŸ’¬")
# upload pdf file
pdf = st.file_uploader("Upload your PDF file",type='pdf')
if pdf is not None:
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text=text)
#chunks = text_splitter.create_documents(text)
# embeddings
embeddings = HuggingFaceEmbeddings()
vector_store = chroma.Chroma.from_texts(chunks,embeddings)
# Accept user question
query = st.text_input("Ask questions about your PDF file:")
if query:
torch.cuda.empty_cache()
PATH = 'model/'
#llm = AutoModelForCausalLM.from_pretrained("CohereForAI/aya-101")
# llm = AutoModelForCausalLM.from_pretrained(PATH,local_files_only=True)
llm = huggingface_hub.HuggingFaceHub(repo_id="CohereForAI/aya-101",
model_kwargs={"temperature":1.0, "max_length":100})
docs = vector_store.similarity_search(query=query, k=1)
global chain
chain = load_qa_chain(llm=llm, chain_type="stuff")
response = chain.run(input_documents=docs, question=query)
# retriever=vector_store.as_retriever()
# st.write(retriever)
#chain = RetrievalQA.from_chain_type(llm=llm,chain_type="stuff",retriever=retriever)
#response = chain.run(chain)
st.write(response)
if __name__ == '__main__':
main()