Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
from dotenv import load_dotenv | |
from streamlit_extras.add_vertical_space import add_vertical_space | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings | |
from langchain.vectorstores import chroma | |
from langchain.chains.retrieval_qa.base import RetrievalQA | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain_community.llms import huggingface_hub | |
from langchain.document_loaders.pdf import PyMuPDFLoader | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from langchain_core.vectorstores import VectorStoreRetriever | |
#from langchain.llms import huggingface_endpoint | |
import os | |
#import fitz | |
#import tempfile | |
from langchain.chains.summarize import load_summarize_chain | |
img = Image.open('image/nexio_logo1.png') | |
st.set_page_config(page_title="PDF Chatbot App",page_icon=img,layout="centered") | |
with st.sidebar: | |
st.title('π€ AI PDF Chatbot π¬') | |
st.markdown(''' | |
## About | |
This app is an AI chatbot for the PDF files | |
''') | |
add_vertical_space(12) | |
st.write('Powered by ') | |
st.image(image='image/nexio_logo2.png',width=150) | |
# load huggingface API key .env file | |
load_dotenv() | |
def main(): | |
st.header("Chat with PDF π¬") | |
# upload pdf file | |
pdf = st.file_uploader("Upload your PDF file",type='pdf') | |
if pdf is not None: | |
pdf_reader = PdfReader(pdf) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text=text) | |
chunks_doc = text_splitter.create_documents(text) | |
# embeddings | |
embeddings = HuggingFaceEmbeddings() | |
vector_store = chroma.Chroma.from_texts(chunks,embeddings) | |
# Accept user question | |
query = st.text_input("Ask questions about your PDF file:") | |
if query: | |
#PATH = 'model/' | |
#llm = AutoModelForCausalLM.from_pretrained("openai-community/gpt2-medium") | |
llm = huggingface_hub.HuggingFaceHub(repo_id="openai-community/gpt2-medium",model_kwargs={"temperature":1.0, "max_length":500}) | |
#docs = vector_store.similarity_search(query=query, k=1) | |
#st.write(docs) | |
#chain = load_qa_chain(llm=llm, chain_type="stuff") | |
#response = chain.run(input_documents=docs, question=query) | |
retriever=vector_store.similarity_search(query) | |
st.write(retriever[0].page_content) | |
#chain = RetrievalQA.from_chain_type(llm=llm,chain_type="stuff",retriever=retriever[0].page_content) | |
#response = chain.run(query) | |
#st.write(response) | |
if __name__ == '__main__': | |
main() | |