Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -67,6 +67,33 @@ def load_from_drive(file_id: str):
|
|
67 |
st.error(f"Error loading file from Drive: {str(e)}")
|
68 |
return None
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
@st.cache_resource(show_spinner=False)
|
71 |
def load_llama_model():
|
72 |
"""Load Llama model with caching"""
|
@@ -78,20 +105,37 @@ def load_llama_model():
|
|
78 |
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
79 |
download_file_with_progress(direct_url, model_path)
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
llm_config = {
|
82 |
"model_path": model_path,
|
83 |
"n_ctx": 2048,
|
84 |
"n_threads": 4,
|
85 |
"n_batch": 512,
|
86 |
"n_gpu_layers": 0,
|
87 |
-
"verbose":
|
88 |
}
|
89 |
|
|
|
90 |
model = Llama(**llm_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
st.success("Model loaded successfully!")
|
92 |
return model
|
|
|
93 |
except Exception as e:
|
94 |
-
|
|
|
95 |
raise
|
96 |
|
97 |
def check_environment():
|
@@ -152,67 +196,152 @@ class RAGPipeline:
|
|
152 |
logging.error(f"Error in query_model: {str(e)}")
|
153 |
raise
|
154 |
|
155 |
-
def process_query(self, query: str, placeholder) -> str:
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
172 |
-
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
-
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
except Exception as e:
|
212 |
-
logging.error(f"
|
213 |
-
|
214 |
-
|
|
|
215 |
return message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
@st.cache_resource(show_spinner=False)
|
218 |
def initialize_rag_pipeline():
|
@@ -244,6 +373,132 @@ def initialize_rag_pipeline():
|
|
244 |
st.error(f"Failed to initialize the system: {str(e)}")
|
245 |
raise
|
246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
def main():
|
248 |
try:
|
249 |
# Environment check
|
@@ -333,10 +588,17 @@ def main():
|
|
333 |
</p>
|
334 |
""", unsafe_allow_html=True)
|
335 |
|
336 |
-
# Initialize the pipeline
|
337 |
if 'rag' not in st.session_state:
|
338 |
-
|
339 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
# Create columns for layout
|
342 |
col1, col2, col3 = st.columns([1, 6, 1])
|
@@ -349,10 +611,18 @@ def main():
|
|
349 |
if query:
|
350 |
response_placeholder = st.empty()
|
351 |
try:
|
|
|
|
|
|
|
|
|
352 |
response = st.session_state.rag.process_query(query, response_placeholder)
|
|
|
|
|
353 |
logging.info(f"Generated response: {response}")
|
354 |
except Exception as e:
|
|
|
355 |
logging.error(f"Query processing error: {str(e)}")
|
|
|
356 |
response_placeholder.warning("Unable to process your question. Please try again.")
|
357 |
else:
|
358 |
st.warning("Please enter a question!")
|
@@ -368,7 +638,22 @@ def main():
|
|
368 |
|
369 |
except Exception as e:
|
370 |
logging.error(f"Application error: {str(e)}")
|
|
|
371 |
st.error("An unexpected error occurred. Please check the logs and try again.")
|
372 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
if __name__ == "__main__":
|
374 |
main()
|
|
|
67 |
st.error(f"Error loading file from Drive: {str(e)}")
|
68 |
return None
|
69 |
|
70 |
+
# @st.cache_resource(show_spinner=False)
|
71 |
+
# def load_llama_model():
|
72 |
+
# """Load Llama model with caching"""
|
73 |
+
# try:
|
74 |
+
# model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
|
75 |
+
|
76 |
+
# if not os.path.exists(model_path):
|
77 |
+
# st.info("Downloading model... This may take a while.")
|
78 |
+
# direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
79 |
+
# download_file_with_progress(direct_url, model_path)
|
80 |
+
|
81 |
+
# llm_config = {
|
82 |
+
# "model_path": model_path,
|
83 |
+
# "n_ctx": 2048,
|
84 |
+
# "n_threads": 4,
|
85 |
+
# "n_batch": 512,
|
86 |
+
# "n_gpu_layers": 0,
|
87 |
+
# "verbose": False
|
88 |
+
# }
|
89 |
+
|
90 |
+
# model = Llama(**llm_config)
|
91 |
+
# st.success("Model loaded successfully!")
|
92 |
+
# return model
|
93 |
+
# except Exception as e:
|
94 |
+
# st.error(f"Error loading model: {str(e)}")
|
95 |
+
# raise
|
96 |
+
|
97 |
@st.cache_resource(show_spinner=False)
|
98 |
def load_llama_model():
|
99 |
"""Load Llama model with caching"""
|
|
|
105 |
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
106 |
download_file_with_progress(direct_url, model_path)
|
107 |
|
108 |
+
if not os.path.exists(model_path):
|
109 |
+
raise FileNotFoundError("Model file not found after download attempt")
|
110 |
+
|
111 |
+
if os.path.getsize(model_path) < 1000000: # Less than 1MB
|
112 |
+
raise ValueError("Model file is too small, likely corrupted")
|
113 |
+
|
114 |
llm_config = {
|
115 |
"model_path": model_path,
|
116 |
"n_ctx": 2048,
|
117 |
"n_threads": 4,
|
118 |
"n_batch": 512,
|
119 |
"n_gpu_layers": 0,
|
120 |
+
"verbose": True # Enable verbose mode for debugging
|
121 |
}
|
122 |
|
123 |
+
logging.info("Initializing Llama model...")
|
124 |
model = Llama(**llm_config)
|
125 |
+
|
126 |
+
# Test the model
|
127 |
+
logging.info("Testing model...")
|
128 |
+
test_response = model("Test", max_tokens=10)
|
129 |
+
if not test_response:
|
130 |
+
raise RuntimeError("Model test failed")
|
131 |
+
|
132 |
+
logging.info("Model loaded and tested successfully")
|
133 |
st.success("Model loaded successfully!")
|
134 |
return model
|
135 |
+
|
136 |
except Exception as e:
|
137 |
+
logging.error(f"Error loading model: {str(e)}")
|
138 |
+
logging.error("Full error details: ", exc_info=True)
|
139 |
raise
|
140 |
|
141 |
def check_environment():
|
|
|
196 |
logging.error(f"Error in query_model: {str(e)}")
|
197 |
raise
|
198 |
|
199 |
+
# def process_query(self, query: str, placeholder) -> str:
|
200 |
+
# try:
|
201 |
+
# # Preprocess query
|
202 |
+
# query = self.preprocess_query(query)
|
203 |
|
204 |
+
# # Show retrieval status
|
205 |
+
# status = placeholder.empty()
|
206 |
+
# status.write("๐ Finding relevant information...")
|
207 |
|
208 |
+
# # Get embeddings and search
|
209 |
+
# query_embedding = self.retriever.encode([query])
|
210 |
+
# similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
211 |
+
# scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
212 |
|
213 |
+
# relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
214 |
|
215 |
+
# # Update status
|
216 |
+
# status.write("๐ญ Generating response...")
|
217 |
|
218 |
+
# # Prepare context and prompt
|
219 |
+
# context = "\n".join(relevant_docs[:3])
|
220 |
+
# prompt = f"""Context information is below:
|
221 |
+
# {context}
|
222 |
|
223 |
+
# Given the context above, please answer the following question:
|
224 |
+
# {query}
|
225 |
+
|
226 |
+
# Guidelines:
|
227 |
+
# - If you cannot answer based on the context, say so politely
|
228 |
+
# - Keep the response concise and focused
|
229 |
+
# - Only include sports-related information
|
230 |
+
# - No dates or timestamps in the response
|
231 |
+
# - Use clear, natural language
|
232 |
|
233 |
+
# Answer:"""
|
234 |
|
235 |
+
# # Generate response
|
236 |
+
# response_placeholder = placeholder.empty()
|
237 |
|
238 |
+
# try:
|
239 |
+
# response_text = self.query_model(prompt)
|
240 |
+
# if response_text:
|
241 |
+
# final_response = self.postprocess_response(response_text)
|
242 |
+
# response_placeholder.markdown(final_response)
|
243 |
+
# return final_response
|
244 |
+
# else:
|
245 |
+
# message = "No relevant answer found. Please try rephrasing your question."
|
246 |
+
# response_placeholder.warning(message)
|
247 |
+
# return message
|
248 |
|
249 |
+
# except Exception as e:
|
250 |
+
# logging.error(f"Generation error: {str(e)}")
|
251 |
+
# message = "Had some trouble generating the response. Please try again."
|
252 |
+
# response_placeholder.warning(message)
|
253 |
+
# return message
|
254 |
|
255 |
+
# except Exception as e:
|
256 |
+
# logging.error(f"Process error: {str(e)}")
|
257 |
+
# message = "Something went wrong. Please try again with a different question."
|
258 |
+
# placeholder.warning(message)
|
259 |
+
# return message
|
260 |
+
|
261 |
+
def process_query(self, query: str, placeholder) -> str:
|
262 |
+
try:
|
263 |
+
# Preprocess query
|
264 |
+
query = self.preprocess_query(query)
|
265 |
+
logging.info(f"Processing query: {query}")
|
266 |
+
|
267 |
+
# Show retrieval status
|
268 |
+
status = placeholder.empty()
|
269 |
+
status.write("๐ Finding relevant information...")
|
270 |
+
|
271 |
+
# Get embeddings and search
|
272 |
+
query_embedding = self.retriever.encode([query])
|
273 |
+
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
274 |
+
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
275 |
+
|
276 |
+
# Log similarity scores
|
277 |
+
for idx, score in zip(indices.tolist(), scores.tolist()):
|
278 |
+
logging.info(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
279 |
+
|
280 |
+
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
281 |
+
|
282 |
+
# Update status
|
283 |
+
status.write("๐ญ Generating response...")
|
284 |
+
|
285 |
+
# Prepare context and prompt
|
286 |
+
context = "\n".join(relevant_docs[:3])
|
287 |
+
prompt = f"""Context information is below:
|
288 |
+
{context}
|
289 |
+
|
290 |
+
Given the context above, please answer the following question:
|
291 |
+
{query}
|
292 |
+
|
293 |
+
Guidelines:
|
294 |
+
- If you cannot answer based on the context, say so politely
|
295 |
+
- Keep the response concise and focused
|
296 |
+
- Only include sports-related information
|
297 |
+
- No dates or timestamps in the response
|
298 |
+
- Use clear, natural language
|
299 |
+
|
300 |
+
Answer:"""
|
301 |
+
|
302 |
+
# Generate response
|
303 |
+
response_placeholder = placeholder.empty()
|
304 |
+
|
305 |
+
try:
|
306 |
+
# Add logging for model state
|
307 |
+
logging.info("Model state check - Is None?: " + str(self.llm is None))
|
308 |
+
|
309 |
+
# Directly use Llama model
|
310 |
+
response = self.llm(
|
311 |
+
prompt,
|
312 |
+
max_tokens=512,
|
313 |
+
temperature=0.4,
|
314 |
+
top_p=0.95,
|
315 |
+
echo=False,
|
316 |
+
stop=["Question:", "\n\n"]
|
317 |
+
)
|
318 |
+
|
319 |
+
logging.info(f"Raw model response: {response}")
|
320 |
+
|
321 |
+
if response and isinstance(response, dict) and 'choices' in response:
|
322 |
+
generated_text = response['choices'][0].get('text', '').strip()
|
323 |
+
if generated_text:
|
324 |
+
final_response = self.postprocess_response(generated_text)
|
325 |
+
response_placeholder.markdown(final_response)
|
326 |
+
return final_response
|
327 |
+
|
328 |
+
message = "No relevant answer found. Please try rephrasing your question."
|
329 |
+
response_placeholder.warning(message)
|
330 |
+
return message
|
331 |
+
|
332 |
except Exception as e:
|
333 |
+
logging.error(f"Generation error: {str(e)}")
|
334 |
+
logging.error(f"Full error details: ", exc_info=True)
|
335 |
+
message = f"Had some trouble generating the response: {str(e)}"
|
336 |
+
response_placeholder.warning(message)
|
337 |
return message
|
338 |
+
|
339 |
+
except Exception as e:
|
340 |
+
logging.error(f"Process error: {str(e)}")
|
341 |
+
logging.error(f"Full error details: ", exc_info=True)
|
342 |
+
message = f"Something went wrong: {str(e)}"
|
343 |
+
placeholder.warning(message)
|
344 |
+
return message
|
345 |
|
346 |
@st.cache_resource(show_spinner=False)
|
347 |
def initialize_rag_pipeline():
|
|
|
373 |
st.error(f"Failed to initialize the system: {str(e)}")
|
374 |
raise
|
375 |
|
376 |
+
# def main():
|
377 |
+
# try:
|
378 |
+
# # Environment check
|
379 |
+
# if not check_environment():
|
380 |
+
# return
|
381 |
+
|
382 |
+
# # Improved CSS styling
|
383 |
+
# st.markdown("""
|
384 |
+
# <style>
|
385 |
+
# /* Container styling */
|
386 |
+
# .block-container {
|
387 |
+
# padding-top: 2rem;
|
388 |
+
# padding-bottom: 2rem;
|
389 |
+
# }
|
390 |
+
|
391 |
+
# /* Text input styling */
|
392 |
+
# .stTextInput > div > div > input {
|
393 |
+
# width: 100%;
|
394 |
+
# }
|
395 |
+
|
396 |
+
# /* Button styling */
|
397 |
+
# .stButton > button {
|
398 |
+
# width: 200px;
|
399 |
+
# margin: 0 auto;
|
400 |
+
# display: block;
|
401 |
+
# background-color: #FF4B4B;
|
402 |
+
# color: white;
|
403 |
+
# border-radius: 5px;
|
404 |
+
# padding: 0.5rem 1rem;
|
405 |
+
# }
|
406 |
+
|
407 |
+
# /* Title styling */
|
408 |
+
# .main-title {
|
409 |
+
# text-align: center;
|
410 |
+
# padding: 1rem 0;
|
411 |
+
# font-size: 3rem;
|
412 |
+
# color: #1F1F1F;
|
413 |
+
# }
|
414 |
+
|
415 |
+
# .sub-title {
|
416 |
+
# text-align: center;
|
417 |
+
# padding: 0.5rem 0;
|
418 |
+
# font-size: 1.5rem;
|
419 |
+
# color: #4F4F4F;
|
420 |
+
# }
|
421 |
+
|
422 |
+
# /* Description styling */
|
423 |
+
# .description {
|
424 |
+
# text-align: center;
|
425 |
+
# color: #666666;
|
426 |
+
# padding: 0.5rem 0;
|
427 |
+
# font-size: 1.1rem;
|
428 |
+
# line-height: 1.6;
|
429 |
+
# margin-bottom: 1rem;
|
430 |
+
# }
|
431 |
+
|
432 |
+
# /* Answer container styling */
|
433 |
+
# .stMarkdown {
|
434 |
+
# max-width: 100%;
|
435 |
+
# }
|
436 |
+
|
437 |
+
# /* Streamlit default overrides */
|
438 |
+
# .st-emotion-cache-16idsys p {
|
439 |
+
# font-size: 1.1rem;
|
440 |
+
# line-height: 1.6;
|
441 |
+
# }
|
442 |
+
|
443 |
+
# /* Container for main content */
|
444 |
+
# .main-content {
|
445 |
+
# max-width: 1200px;
|
446 |
+
# margin: 0 auto;
|
447 |
+
# padding: 0 1rem;
|
448 |
+
# }
|
449 |
+
# </style>
|
450 |
+
# """, unsafe_allow_html=True)
|
451 |
+
|
452 |
+
# # Header section
|
453 |
+
# st.markdown("<h1 class='main-title'>๐ The Sport Chatbot</h1>", unsafe_allow_html=True)
|
454 |
+
# st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
|
455 |
+
# st.markdown("""
|
456 |
+
# <p class='description'>
|
457 |
+
# Hey there! ๐ I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
|
458 |
+
# With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
|
459 |
+
# </p>
|
460 |
+
# <p class='description'>
|
461 |
+
# Got any general questions? Feel free to askโI'll do my best to provide answers based on the information I've been trained on!
|
462 |
+
# </p>
|
463 |
+
# """, unsafe_allow_html=True)
|
464 |
+
|
465 |
+
# # Initialize the pipeline
|
466 |
+
# if 'rag' not in st.session_state:
|
467 |
+
# with st.spinner("Loading resources..."):
|
468 |
+
# st.session_state.rag = initialize_rag_pipeline()
|
469 |
+
|
470 |
+
# # Create columns for layout
|
471 |
+
# col1, col2, col3 = st.columns([1, 6, 1])
|
472 |
+
|
473 |
+
# with col2:
|
474 |
+
# # Query input
|
475 |
+
# query = st.text_input("What would you like to know about sports?")
|
476 |
+
|
477 |
+
# if st.button("Get Answer"):
|
478 |
+
# if query:
|
479 |
+
# response_placeholder = st.empty()
|
480 |
+
# try:
|
481 |
+
# response = st.session_state.rag.process_query(query, response_placeholder)
|
482 |
+
# logging.info(f"Generated response: {response}")
|
483 |
+
# except Exception as e:
|
484 |
+
# logging.error(f"Query processing error: {str(e)}")
|
485 |
+
# response_placeholder.warning("Unable to process your question. Please try again.")
|
486 |
+
# else:
|
487 |
+
# st.warning("Please enter a question!")
|
488 |
+
|
489 |
+
# # Footer
|
490 |
+
# st.markdown("<br><br>", unsafe_allow_html=True)
|
491 |
+
# st.markdown("---")
|
492 |
+
# st.markdown("""
|
493 |
+
# <p style='text-align: center; color: #666666; padding: 1rem 0;'>
|
494 |
+
# Powered by ESPN Data & Mistral AI ๐
|
495 |
+
# </p>
|
496 |
+
# """, unsafe_allow_html=True)
|
497 |
+
|
498 |
+
# except Exception as e:
|
499 |
+
# logging.error(f"Application error: {str(e)}")
|
500 |
+
# st.error("An unexpected error occurred. Please check the logs and try again.")
|
501 |
+
|
502 |
def main():
|
503 |
try:
|
504 |
# Environment check
|
|
|
588 |
</p>
|
589 |
""", unsafe_allow_html=True)
|
590 |
|
591 |
+
# Initialize the pipeline with better error handling
|
592 |
if 'rag' not in st.session_state:
|
593 |
+
try:
|
594 |
+
with st.spinner("Loading resources..."):
|
595 |
+
st.session_state.rag = initialize_rag_pipeline()
|
596 |
+
logging.info("Pipeline initialized successfully")
|
597 |
+
except Exception as e:
|
598 |
+
logging.error(f"Pipeline initialization error: {str(e)}")
|
599 |
+
st.error("Failed to initialize the system. Please check the logs.")
|
600 |
+
st.stop()
|
601 |
+
return
|
602 |
|
603 |
# Create columns for layout
|
604 |
col1, col2, col3 = st.columns([1, 6, 1])
|
|
|
611 |
if query:
|
612 |
response_placeholder = st.empty()
|
613 |
try:
|
614 |
+
# Log query processing start
|
615 |
+
logging.info(f"Processing query: {query}")
|
616 |
+
|
617 |
+
# Process query and get response
|
618 |
response = st.session_state.rag.process_query(query, response_placeholder)
|
619 |
+
|
620 |
+
# Log successful response
|
621 |
logging.info(f"Generated response: {response}")
|
622 |
except Exception as e:
|
623 |
+
# Log error details
|
624 |
logging.error(f"Query processing error: {str(e)}")
|
625 |
+
logging.error("Full error details: ", exc_info=True)
|
626 |
response_placeholder.warning("Unable to process your question. Please try again.")
|
627 |
else:
|
628 |
st.warning("Please enter a question!")
|
|
|
638 |
|
639 |
except Exception as e:
|
640 |
logging.error(f"Application error: {str(e)}")
|
641 |
+
logging.error("Full error details: ", exc_info=True)
|
642 |
st.error("An unexpected error occurred. Please check the logs and try again.")
|
643 |
|
644 |
+
if __name__ == "__main__":
|
645 |
+
# Configure logging
|
646 |
+
logging.basicConfig(
|
647 |
+
level=logging.INFO,
|
648 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
649 |
+
)
|
650 |
+
|
651 |
+
try:
|
652 |
+
main()
|
653 |
+
except Exception as e:
|
654 |
+
logging.error(f"Fatal error: {str(e)}")
|
655 |
+
logging.error("Full error details: ", exc_info=True)
|
656 |
+
st.error("A fatal error occurred. Please check the logs and try again.")
|
657 |
+
|
658 |
if __name__ == "__main__":
|
659 |
main()
|