import { z } from "zod"; import type { EmbeddingEndpoint } from "../embeddingEndpoints"; import type { Tensor, FeatureExtractionPipeline } from "@xenova/transformers"; import { pipeline } from "@xenova/transformers"; export const embeddingEndpointTransformersJSParametersSchema = z.object({ weight: z.number().int().positive().default(1), model: z.any(), type: z.literal("transformersjs"), }); // Use the Singleton pattern to enable lazy construction of the pipeline. class TransformersJSModelsSingleton { static instances: Array<[string, Promise]> = []; static async getInstance(modelName: string): Promise { const modelPipelineInstance = this.instances.find(([name]) => name === modelName); if (modelPipelineInstance) { const [, modelPipeline] = modelPipelineInstance; return modelPipeline; } const newModelPipeline = pipeline("feature-extraction", modelName); this.instances.push([modelName, newModelPipeline]); return newModelPipeline; } } export async function calculateEmbedding(modelName: string, inputs: string[]) { const extractor = await TransformersJSModelsSingleton.getInstance(modelName); const output: Tensor = await extractor(inputs, { pooling: "mean", normalize: true }); return output.tolist(); } export function embeddingEndpointTransformersJS( input: z.input ): EmbeddingEndpoint { const { model } = embeddingEndpointTransformersJSParametersSchema.parse(input); return async ({ inputs }) => { return calculateEmbedding(model.name, inputs); }; }