nithinm19 commited on
Commit
27151df
1 Parent(s): d212df3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -5,17 +5,17 @@ import torch
5
  import requests
6
  from io import BytesIO
7
 
8
- # Load model and processor
9
  try:
10
  model = AutoModel.from_pretrained("zxhezexin/openlrm-mix-large-1.1")
11
  processor = AutoProcessor.from_pretrained("zxhezexin/openlrm-mix-large-1.1")
12
  except Exception as e:
13
  print(f"Error loading model or processor: {e}")
14
 
15
- # Example image URL (change this to a suitable 2D image URL)
16
- example_image_url = "https://example.com/path-to-your-example-image.jpg"
17
 
18
- # Load example image
19
  def load_example_image():
20
  try:
21
  response = requests.get(example_image_url)
@@ -35,23 +35,23 @@ def image_to_3d(image):
35
  with torch.no_grad():
36
  outputs = model(**inputs)
37
 
38
- # Placeholder return, replace this with actual 3D visualization
39
- return "3D model generated!"
40
  except Exception as e:
41
  return f"Error during inference: {str(e)}"
42
 
43
- # Gradio interface
44
  example_image = load_example_image()
45
 
 
46
  interface = gr.Interface(
47
  fn=image_to_3d,
48
  inputs=gr.Image(type="pil", label="Upload an Image or use Example"),
49
- outputs="text", # Placeholder output (you can modify this for 3D)
50
  title="OpenLRM Mix-Large 1.1 - Image to 3D",
51
  description="Upload an image to generate a 3D model using OpenLRM Mix-Large 1.1.",
52
- examples=[[example_image]] if example_image else None # Include the example image
53
  )
54
 
55
  # Launch the Gradio interface
56
  interface.launch()
57
-
 
5
  import requests
6
  from io import BytesIO
7
 
8
+ # Load model and processor from Hugging Face
9
  try:
10
  model = AutoModel.from_pretrained("zxhezexin/openlrm-mix-large-1.1")
11
  processor = AutoProcessor.from_pretrained("zxhezexin/openlrm-mix-large-1.1")
12
  except Exception as e:
13
  print(f"Error loading model or processor: {e}")
14
 
15
+ # Example image URL (replace this with a suitable example)
16
+ example_image_url = "https://huggingface.co/datasets/nateraw/image-folder/resolve/main/example_1.png"
17
 
18
+ # Function to load example image from URL
19
  def load_example_image():
20
  try:
21
  response = requests.get(example_image_url)
 
35
  with torch.no_grad():
36
  outputs = model(**inputs)
37
 
38
+ # Placeholder return, replace this with actual 3D visualization logic
39
+ return "3D model generated from input image!"
40
  except Exception as e:
41
  return f"Error during inference: {str(e)}"
42
 
43
+ # Load the example image for the Gradio interface
44
  example_image = load_example_image()
45
 
46
+ # Gradio interface setup
47
  interface = gr.Interface(
48
  fn=image_to_3d,
49
  inputs=gr.Image(type="pil", label="Upload an Image or use Example"),
50
+ outputs="text", # Placeholder output (replace with 3D rendering if needed)
51
  title="OpenLRM Mix-Large 1.1 - Image to 3D",
52
  description="Upload an image to generate a 3D model using OpenLRM Mix-Large 1.1.",
53
+ examples=[[example_image]] if example_image else None # Include the example image if loaded
54
  )
55
 
56
  # Launch the Gradio interface
57
  interface.launch()