Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModel, AutoProcessor
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load model and processor
|
7 |
+
model = AutoModel.from_pretrained("zxhezexin/openlrm-mix-large-1.1")
|
8 |
+
processor = AutoProcessor.from_pretrained("zxhezexin/openlrm-mix-large-1.1")
|
9 |
+
|
10 |
+
# Define function to generate 3D output from 2D image
|
11 |
+
def image_to_3d(image):
|
12 |
+
inputs = processor(images=image, return_tensors="pt")
|
13 |
+
with torch.no_grad():
|
14 |
+
outputs = model(**inputs)
|
15 |
+
# This is placeholder logic; you'd need to process the outputs appropriately
|
16 |
+
return "3D Output Generated" # Replace with actual visualization code
|
17 |
+
|
18 |
+
# Gradio interface
|
19 |
+
interface = gr.Interface(
|
20 |
+
fn=image_to_3d,
|
21 |
+
inputs=gr.Image(type="pil"),
|
22 |
+
outputs="text", # Replace with "3D" if you can visualize the output
|
23 |
+
title="OpenLRM Mix-Large 1.1 - Image to 3D"
|
24 |
+
)
|
25 |
+
|
26 |
+
interface.launch()
|