nitinbhayana commited on
Commit
ee27115
1 Parent(s): 4f4cade

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -1
app.py CHANGED
@@ -1,3 +1,30 @@
1
  import gradio as gr
2
 
3
- gr.Interface.load("models/nitinbhayana/Llama-2-7b-chat-hf-review-phrases-sentiments-v2").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
+ #gr.Interface.load("models/nitinbhayana/Llama-2-7b-chat-hf-review-phrases-sentiments-v2").launch()
4
+
5
+
6
+ from transformers import pipeline
7
+
8
+ pipeline = pipeline("text-generation", model="nitinbhayana/Llama-2-7b-chat-hf-keyword-category-brand-v1")
9
+
10
+ def predict(review):
11
+
12
+ prompt=f"""[INST] <<SYS>>
13
+ You are a helpful assistant that provides accurate and concise responses. Do not hallucinate.
14
+ <</SYS>>
15
+ Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
16
+ ### Instruction:
17
+ Analyze the following printer product review on amazon to extract any relevant phrases from the review that are related to each of the specified topics: ['connectivity', 'customer_support', 'delivery_and_packaging', 'durability', 'features', 'ink_toner_cost_efficiency', 'noise', 'print_quality', 'setup_and_installation', 'speed', 'user_interface', 'value_for_money', 'portability', 'easy_to_use', 'mobile_printing_functionality','authenticity','product_quality'], and indicate the sentiment expressed in each phrase.The sentiment evaluations should range from 0 to 5, with 5 represents extremely positive sentiment, 4 indicates very positive sentiment, 3 suggests neutral sentiment, 2 reflects somewhat negative sentiment, 1 represents highly negative sentiment, and 0 means not mentioned. Provide the output in JSON format.
18
+ ### Input:
19
+ {review}
20
+ [/INST]
21
+ """
22
+ predictions = pipeline(prompt)
23
+ return (predictions)
24
+
25
+ gr.Interface(
26
+ predict,
27
+ inputs='text',
28
+ outputs='text',
29
+ title="Printer review categorization with sentiments",
30
+ ).launch()