|
import os |
|
import chainlit as cl |
|
from langchain.storage import LocalFileStore |
|
from langchain_community.document_loaders import PyMuPDFLoader |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_openai import ChatOpenAI, OpenAIEmbeddings |
|
from langchain_community.vectorstores import Qdrant |
|
from langchain.embeddings import CacheBackedEmbeddings |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_core.runnables import RunnablePassthrough |
|
from operator import itemgetter |
|
from qdrant_client import QdrantClient |
|
from qdrant_client.http.models import Distance, VectorParams |
|
from langchain_core.globals import set_llm_cache |
|
from langchain_core.caches import InMemoryCache |
|
import shutil |
|
|
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
store = LocalFileStore("./cache/") |
|
set_llm_cache(InMemoryCache()) |
|
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small") |
|
cached_embedder = CacheBackedEmbeddings.from_bytes_store( |
|
core_embeddings, store, namespace=core_embeddings.model |
|
) |
|
|
|
|
|
collection_name = "production_pdf_collection" |
|
client = QdrantClient(":memory:") |
|
client.create_collection( |
|
collection_name=collection_name, |
|
vectors_config=VectorParams(size=1536, distance=Distance.COSINE), |
|
) |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) |
|
chat_model = ChatOpenAI(model="gpt-3.5-turbo") |
|
|
|
|
|
rag_system_prompt_template = """ |
|
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existence of context. |
|
""" |
|
|
|
rag_user_prompt_template = """ |
|
Question: |
|
{question} |
|
Context: |
|
{context} |
|
""" |
|
|
|
chat_prompt = ChatPromptTemplate.from_messages([ |
|
("system", rag_system_prompt_template), |
|
("human", rag_user_prompt_template) |
|
]) |
|
|
|
@cl.on_chat_start |
|
async def on_chat_start(): |
|
await cl.Message("Welcome! Please upload a PDF file to begin.").send() |
|
|
|
files = await cl.AskFileMessage( |
|
content="Please upload a PDF file", |
|
accept=["application/pdf"], |
|
max_size_mb=20, |
|
timeout=180, |
|
).send() |
|
|
|
if not files: |
|
await cl.Message("No file was uploaded. Please refresh the page and try again.").send() |
|
return |
|
|
|
pdf_file = files[0] |
|
await cl.Message(f"Processing '{pdf_file.name}'...").send() |
|
|
|
try: |
|
|
|
temp_file_path = f"/tmp/{pdf_file.name}" |
|
with open(temp_file_path, "wb") as f: |
|
f.write(pdf_file.content) |
|
|
|
|
|
loader = PyMuPDFLoader(temp_file_path) |
|
documents = loader.load() |
|
docs = text_splitter.split_documents(documents) |
|
for i, doc in enumerate(docs): |
|
doc.metadata["source"] = f"source_{i}" |
|
|
|
|
|
vectorstore = Qdrant( |
|
client=client, |
|
collection_name=collection_name, |
|
embeddings=cached_embedder) |
|
vectorstore.add_documents(docs) |
|
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3}) |
|
|
|
|
|
rag_chain = ( |
|
{"context": itemgetter("question") | retriever, "question": itemgetter("question")} |
|
| RunnablePassthrough.assign(context=itemgetter("context")) |
|
| chat_prompt |
|
| chat_model |
|
) |
|
|
|
cl.user_session.set("rag_chain", rag_chain) |
|
await cl.Message(f"PDF '{pdf_file.name}' has been processed. You can now ask questions about its content.").send() |
|
|
|
|
|
os.remove(temp_file_path) |
|
|
|
except Exception as e: |
|
await cl.Message(f"An error occurred while processing the PDF: {str(e)}").send() |
|
import traceback |
|
await cl.Message(f"Traceback: {traceback.format_exc()}").send() |
|
|
|
@cl.on_message |
|
async def on_message(message: cl.Message): |
|
rag_chain = cl.user_session.get("rag_chain") |
|
if rag_chain is None: |
|
await cl.Message("Please upload a PDF file first.").send() |
|
return |
|
|
|
try: |
|
response = await cl.make_async(rag_chain.invoke)({"question": message.content}) |
|
await cl.Message(content=response.content).send() |
|
except Exception as e: |
|
await cl.Message("An error occurred while processing your question. Please try again.").send() |