File size: 2,566 Bytes
06758b6
 
e5e23ef
 
 
 
 
06758b6
 
 
bfc72f4
e5e23ef
3d598a4
e5e23ef
06758b6
 
e5e23ef
06758b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e23ef
 
 
 
 
 
 
 
 
 
 
 
06758b6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from langchain.chains import RetrievalQA
from vectorize_dataset import load_descriptions_data, create_db
from helpers import clean_up_tags, get_dataset_metadata, get_dataset_readme
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import HuggingFaceHub
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings


class DatasetRecommender:
    def __init__(self, dataset = 'nkasmanoff/huggingface-datasets' ,
                  llm_backbone = ChatOpenAI(),
                  embeddings_backbone = HuggingFaceEmbeddings()):
        self.dataset = dataset
        self.llm_backbone = llm_backbone
        self.embeddings_backbone = embeddings_backbone
        self.hf_df = load_descriptions_data(dataset=self.dataset)
        self.db = create_db(self.hf_df, self.embeddings_backbone)
        self.datasets_url_base = "https://huggingface.co/datasets/"
        # expose this index in a retriever interface
        self.retriever = self.db.as_retriever(search_type="similarity", search_kwargs={"k":2})
        # create a chain to answer questions 
        self.qa = RetrievalQA.from_chain_type(
            llm=self.llm_backbone, chain_type="stuff", retriever=self.retriever, return_source_documents=True)

    def recommend_based_on_text(self, query):
        result = self.qa({"query": query})
        response_text = result['result']
        source_documents = result['source_documents']
        linked_datasets = [f"{self.datasets_url_base}{x.metadata['id']}" for x in source_documents]
        return {'message': response_text, 'datasets': linked_datasets}

    def get_similar_datasets(self, query_url):
        if self.dataset == "nkasmanoff/hf-dataset-cards":
            retrieved_metadata = get_dataset_readme(query_url)
            if 'README' not in retrieved_metadata:
                return {'error': 'no description found for this dataset.'}

            cleaned_description = retrieved_metadata['README']
        else:
            retrieved_metadata = get_dataset_metadata(query_url)
            if 'description' not in retrieved_metadata:
                return {'error': 'no description found for this dataset.'}
            cleaned_description = retrieved_metadata['description'] + clean_up_tags(retrieved_metadata['tags'])
    
        similar_documents = self.db.similarity_search(cleaned_description)
        similar_datasets = [f"{self.datasets_url_base}{x.metadata['id']}" for x in similar_documents if x.metadata['id'] not in query_url]       
        return {'datasets': similar_datasets}