deteksihoax / test.py
Nakhwa's picture
Upload 10 files
696314f verified
raw
history blame
2.45 kB
import torch
from torch.nn.functional import softmax
from load_model import load_model # Import the load_model function
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import streamlit as st
@st.cache_resource
def get_model_and_tokenizer(model_name):
return load_model(model_name)
# Initialize default model (could be anything, or even load dynamically)
default_model_name = "cahya/bert-base-indonesian-522M"
tokenizer, model = load_model(default_model_name)
# Prediction function
def predict_hoax(title, content):
if tokenizer is None or model is None:
raise ValueError("Model and tokenizer must be loaded before prediction.")
print(f"Using model: {model}")
print(f"Using tokenizer: {tokenizer}")
text = f"{title} [SEP] {content}"
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=256)
with torch.no_grad():
outputs = model(**inputs)
probs = softmax(outputs.logits, dim=1)
pred = torch.argmax(probs, dim=1).item()
label = 'HOAX' if pred == 1 else 'NON-HOAX'
return label
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model.to(device)
# LIME prediction function
def predict_proba_for_lime(texts):
results = []
for text in texts:
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=256)
with torch.no_grad():
outputs = model(**inputs)
probs = softmax(outputs.logits, dim=1).detach().cpu().numpy()
results.append(probs[0])
return np.array(results)
def evaluate_model_performance(df, tokenizer, model):
true_labels = []
pred_labels = []
for index, row in df.iterrows():
true_label = row['Label'] # Menggunakan 'Title' sebagai label sebenarnya karena tidak ada 'Final_Result'
pred_label = predict_hoax(row['Title'], row['Content'])
true_labels.append(1 if true_label == 'HOAX' else 0)
pred_labels.append(1 if pred_label == 'HOAX' else 0)
accuracy = accuracy_score(true_labels, pred_labels)
precision = precision_score(true_labels, pred_labels, average='binary')
recall = recall_score(true_labels, pred_labels, average='binary')
f1 = f1_score(true_labels, pred_labels, average='binary')
return accuracy, precision, recall, f1