Spaces:
Running
Running
Update test.py
Browse files
test.py
CHANGED
@@ -5,6 +5,8 @@ import numpy as np
|
|
5 |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
6 |
import streamlit as st
|
7 |
|
|
|
|
|
8 |
@st.cache_resource
|
9 |
def get_model_and_tokenizer(model_name):
|
10 |
return load_model(model_name)
|
@@ -14,7 +16,7 @@ default_model_name = "cahya/bert-base-indonesian-522M"
|
|
14 |
tokenizer, model = load_model(default_model_name)
|
15 |
|
16 |
# Move model to GPU
|
17 |
-
model = model.to(
|
18 |
|
19 |
# Prediction function
|
20 |
def predict_hoax(title, content):
|
@@ -26,7 +28,7 @@ def predict_hoax(title, content):
|
|
26 |
|
27 |
text = f"{title} [SEP] {content}"
|
28 |
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=256)
|
29 |
-
inputs = {key: value.to(
|
30 |
|
31 |
with torch.no_grad():
|
32 |
outputs = model(**inputs)
|
@@ -41,7 +43,7 @@ def predict_proba_for_lime(texts):
|
|
41 |
results = []
|
42 |
for text in texts:
|
43 |
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=256)
|
44 |
-
inputs = {key: value.to(
|
45 |
|
46 |
with torch.no_grad():
|
47 |
outputs = model(**inputs)
|
|
|
5 |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
6 |
import streamlit as st
|
7 |
|
8 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
+
|
10 |
@st.cache_resource
|
11 |
def get_model_and_tokenizer(model_name):
|
12 |
return load_model(model_name)
|
|
|
16 |
tokenizer, model = load_model(default_model_name)
|
17 |
|
18 |
# Move model to GPU
|
19 |
+
model = model.to(device)
|
20 |
|
21 |
# Prediction function
|
22 |
def predict_hoax(title, content):
|
|
|
28 |
|
29 |
text = f"{title} [SEP] {content}"
|
30 |
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=256)
|
31 |
+
inputs = {key: value.to(device) for key, value in inputs.items()} # Move inputs to GPU
|
32 |
|
33 |
with torch.no_grad():
|
34 |
outputs = model(**inputs)
|
|
|
43 |
results = []
|
44 |
for text in texts:
|
45 |
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=256)
|
46 |
+
inputs = {key: value.to(device) for key, value in inputs.items()} # Move inputs to GPU
|
47 |
|
48 |
with torch.no_grad():
|
49 |
outputs = model(**inputs)
|