Iftitahu commited on
Commit
88f7b5c
1 Parent(s): b1d8517

Update test.py

Browse files
Files changed (1) hide show
  1. test.py +5 -3
test.py CHANGED
@@ -5,6 +5,8 @@ import numpy as np
5
  from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
6
  import streamlit as st
7
 
 
 
8
  @st.cache_resource
9
  def get_model_and_tokenizer(model_name):
10
  return load_model(model_name)
@@ -14,7 +16,7 @@ default_model_name = "cahya/bert-base-indonesian-522M"
14
  tokenizer, model = load_model(default_model_name)
15
 
16
  # Move model to GPU
17
- model = model.to('cuda')
18
 
19
  # Prediction function
20
  def predict_hoax(title, content):
@@ -26,7 +28,7 @@ def predict_hoax(title, content):
26
 
27
  text = f"{title} [SEP] {content}"
28
  inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=256)
29
- inputs = {key: value.to('cuda') for key, value in inputs.items()} # Move inputs to GPU
30
 
31
  with torch.no_grad():
32
  outputs = model(**inputs)
@@ -41,7 +43,7 @@ def predict_proba_for_lime(texts):
41
  results = []
42
  for text in texts:
43
  inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=256)
44
- inputs = {key: value.to('cuda') for key, value in inputs.items()} # Move inputs to GPU
45
 
46
  with torch.no_grad():
47
  outputs = model(**inputs)
 
5
  from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
6
  import streamlit as st
7
 
8
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
9
+
10
  @st.cache_resource
11
  def get_model_and_tokenizer(model_name):
12
  return load_model(model_name)
 
16
  tokenizer, model = load_model(default_model_name)
17
 
18
  # Move model to GPU
19
+ model = model.to(device)
20
 
21
  # Prediction function
22
  def predict_hoax(title, content):
 
28
 
29
  text = f"{title} [SEP] {content}"
30
  inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=256)
31
+ inputs = {key: value.to(device) for key, value in inputs.items()} # Move inputs to GPU
32
 
33
  with torch.no_grad():
34
  outputs = model(**inputs)
 
43
  results = []
44
  for text in texts:
45
  inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=256)
46
+ inputs = {key: value.to(device) for key, value in inputs.items()} # Move inputs to GPU
47
 
48
  with torch.no_grad():
49
  outputs = model(**inputs)