Spaces:
Running
Running
Update deteksi_content.py
Browse files- deteksi_content.py +149 -149
deteksi_content.py
CHANGED
@@ -1,149 +1,149 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from datetime import datetime
|
3 |
-
import pandas as pd
|
4 |
-
from lime.lime_text import LimeTextExplainer
|
5 |
-
from test import predict_hoax, predict_proba_for_lime
|
6 |
-
import streamlit.components.v1 as components
|
7 |
-
from load_model import load_model
|
8 |
-
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode
|
9 |
-
from styles import COMMON_CSS
|
10 |
-
from google.cloud import storage
|
11 |
-
import os
|
12 |
-
from io import StringIO
|
13 |
-
|
14 |
-
# Set environment variable for Google Cloud credentials
|
15 |
-
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "D:\DashboardHoax\inbound-source-431806-g7-e49e388ce0be.json"
|
16 |
-
|
17 |
-
def save_corrections_to_gcs(bucket_name, file_name, correction_data):
|
18 |
-
client = storage.Client() # Uses the credentials set by the environment variable
|
19 |
-
bucket = client.bucket("dashboardhoax-bucket")
|
20 |
-
blob = bucket.blob("koreksi_pengguna_content.csv")
|
21 |
-
|
22 |
-
# Check if the blob (file) exists
|
23 |
-
if blob.exists():
|
24 |
-
# Download existing CSV from GCS
|
25 |
-
existing_data = blob.download_as_string().decode('utf-8')
|
26 |
-
existing_df = pd.read_csv(StringIO(existing_data))
|
27 |
-
else:
|
28 |
-
# Create a new DataFrame if the file does not exist
|
29 |
-
existing_df = pd.DataFrame(columns=['Timestamp', 'Title', 'Content', 'Prediction', 'Correction'])
|
30 |
-
|
31 |
-
# Append the new data to the existing data
|
32 |
-
new_data_df = pd.DataFrame(correction_data)
|
33 |
-
updated_df = pd.concat([existing_df, new_data_df], ignore_index=True)
|
34 |
-
|
35 |
-
# Convert the DataFrame back to CSV and upload
|
36 |
-
updated_csv_data = updated_df.to_csv(index=False)
|
37 |
-
blob.upload_from_string(updated_csv_data, content_type='text/csv')
|
38 |
-
|
39 |
-
def
|
40 |
-
st.markdown(COMMON_CSS, unsafe_allow_html=True)
|
41 |
-
|
42 |
-
if 'correction' not in st.session_state:
|
43 |
-
st.session_state.correction = None
|
44 |
-
if 'detection_result' not in st.session_state:
|
45 |
-
st.session_state.detection_result = None
|
46 |
-
if 'lime_explanation' not in st.session_state:
|
47 |
-
st.session_state.lime_explanation = None
|
48 |
-
if 'headline' not in st.session_state:
|
49 |
-
st.session_state.headline = ""
|
50 |
-
if 'content' not in st.session_state:
|
51 |
-
st.session_state.content = ""
|
52 |
-
if 'is_correct' not in st.session_state:
|
53 |
-
st.session_state.is_correct = None
|
54 |
-
|
55 |
-
# Dropdown for selecting a model
|
56 |
-
st.markdown("<h6 style='font-size: 14px; margin-bottom: 0;'>Pilih Model</h6>", unsafe_allow_html=True)
|
57 |
-
selected_model = st.selectbox(
|
58 |
-
"",
|
59 |
-
[
|
60 |
-
"cahya/bert-base-indonesian-522M",
|
61 |
-
"indobenchmark/indobert-base-p2",
|
62 |
-
"indolem/indobert-base-uncased",
|
63 |
-
"mdhugol/indonesia-bert-sentiment-classification"
|
64 |
-
],
|
65 |
-
key="model_selector_content"
|
66 |
-
)
|
67 |
-
|
68 |
-
# Load the selected model
|
69 |
-
tokenizer, model = load_model(selected_model)
|
70 |
-
|
71 |
-
st.markdown("<h6 style='font-size: 14px; margin-bottom: 0;'>Masukkan Judul Berita :</h6>", unsafe_allow_html=True)
|
72 |
-
st.session_state.headline = st.text_input("", value=st.session_state.headline)
|
73 |
-
|
74 |
-
st.markdown("<h6 style='font-size: 14px; margin-bottom: 0;'>Masukkan Konten Berita :</h6>", unsafe_allow_html=True)
|
75 |
-
st.session_state.content = st.text_area("", value=st.session_state.content)
|
76 |
-
|
77 |
-
# Detection button
|
78 |
-
if st.button("Deteksi", key="detect_content"):
|
79 |
-
st.session_state.detection_result = predict_hoax(st.session_state.headline, st.session_state.content)
|
80 |
-
st.success(f"Prediksi: {st.session_state.detection_result}")
|
81 |
-
|
82 |
-
# Prepare the text for LIME
|
83 |
-
lime_texts = [f"{st.session_state.headline} [SEP] {st.session_state.content}"]
|
84 |
-
|
85 |
-
# Add a spinner and progress bar to indicate processing
|
86 |
-
with st.spinner("Sedang memproses LIME, harap tunggu..."):
|
87 |
-
# Explain the prediction
|
88 |
-
explainer = LimeTextExplainer(class_names=['NON-HOAX', 'HOAX'])
|
89 |
-
explanation = explainer.explain_instance(lime_texts[0], predict_proba_for_lime, num_features=5, num_samples=1000)
|
90 |
-
|
91 |
-
# Save the LIME explanation in session state
|
92 |
-
st.session_state.lime_explanation = explanation.as_html()
|
93 |
-
|
94 |
-
# Display the detection result and LIME explanation if available
|
95 |
-
if st.session_state.lime_explanation:
|
96 |
-
lime_html = st.session_state.lime_explanation
|
97 |
-
|
98 |
-
# Inject CSS for font size adjustment
|
99 |
-
lime_html = f"""
|
100 |
-
<style>
|
101 |
-
.lime-text-explanation, .lime-highlight, .lime-classification,
|
102 |
-
.lime-text-explanation * {{
|
103 |
-
font-size: 14px !important;
|
104 |
-
}}
|
105 |
-
</style>
|
106 |
-
<div class="lime-text-explanation">
|
107 |
-
{lime_html}
|
108 |
-
</div>
|
109 |
-
"""
|
110 |
-
components.html(lime_html, height=200, scrolling=True)
|
111 |
-
|
112 |
-
# Display a radio button asking if the detection result is correct
|
113 |
-
if st.session_state.detection_result is not None:
|
114 |
-
st.markdown("<h6 style='font-size: 16px; margin-bottom: -150px;'>Apakah hasil deteksi sudah benar?</h6>", unsafe_allow_html=True)
|
115 |
-
st.session_state.is_correct = st.radio("", ("Ya", "Tidak"))
|
116 |
-
|
117 |
-
if st.session_state.is_correct == "Ya":
|
118 |
-
st.success("Deteksi sudah benar.")
|
119 |
-
else:
|
120 |
-
# Determine the correction based on the prediction
|
121 |
-
st.session_state.correction = "HOAX" if st.session_state.detection_result == "NON-HOAX" else "NON-HOAX"
|
122 |
-
|
123 |
-
# Display the correction DataFrame
|
124 |
-
correction_data = [{
|
125 |
-
'Title': st.session_state.headline,
|
126 |
-
'Content': st.session_state.content,
|
127 |
-
'Prediction': st.session_state.detection_result,
|
128 |
-
'Correction': st.session_state.correction,
|
129 |
-
'Timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
130 |
-
}]
|
131 |
-
|
132 |
-
# Save button
|
133 |
-
if st.button("Simpan"):
|
134 |
-
# Save the correction data to GCS
|
135 |
-
save_corrections_to_gcs("your-bucket-name", "koreksi_pengguna.csv", correction_data)
|
136 |
-
|
137 |
-
# Create a formatted string with CSS for alignment and multi-line content handling
|
138 |
-
formatted_text = f"""
|
139 |
-
<div style='font-size: 14px;'>
|
140 |
-
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Title</span> : <span style='white-space: pre-wrap;'>{st.session_state.headline}</span></p>
|
141 |
-
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Content</span> : <span style='white-space: pre-wrap;'>{st.session_state.content}</span></p>
|
142 |
-
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Prediction</span> : {st.session_state.detection_result}</p>
|
143 |
-
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Correction</span> : {st.session_state.correction}</p>
|
144 |
-
</div>
|
145 |
-
"""
|
146 |
-
|
147 |
-
# Display the correction as text
|
148 |
-
st.markdown(formatted_text, unsafe_allow_html=True)
|
149 |
-
st.success("Koreksi telah disimpan.")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from datetime import datetime
|
3 |
+
import pandas as pd
|
4 |
+
from lime.lime_text import LimeTextExplainer
|
5 |
+
from test import predict_hoax, predict_proba_for_lime
|
6 |
+
import streamlit.components.v1 as components
|
7 |
+
from load_model import load_model
|
8 |
+
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode
|
9 |
+
from styles import COMMON_CSS
|
10 |
+
from google.cloud import storage
|
11 |
+
import os
|
12 |
+
from io import StringIO
|
13 |
+
|
14 |
+
# Set environment variable for Google Cloud credentials
|
15 |
+
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "D:\DashboardHoax\inbound-source-431806-g7-e49e388ce0be.json"
|
16 |
+
|
17 |
+
def save_corrections_to_gcs(bucket_name, file_name, correction_data):
|
18 |
+
client = storage.Client() # Uses the credentials set by the environment variable
|
19 |
+
bucket = client.bucket("dashboardhoax-bucket")
|
20 |
+
blob = bucket.blob("koreksi_pengguna_content.csv")
|
21 |
+
|
22 |
+
# Check if the blob (file) exists
|
23 |
+
if blob.exists():
|
24 |
+
# Download existing CSV from GCS
|
25 |
+
existing_data = blob.download_as_string().decode('utf-8')
|
26 |
+
existing_df = pd.read_csv(StringIO(existing_data))
|
27 |
+
else:
|
28 |
+
# Create a new DataFrame if the file does not exist
|
29 |
+
existing_df = pd.DataFrame(columns=['Timestamp', 'Title', 'Content', 'Prediction', 'Correction'])
|
30 |
+
|
31 |
+
# Append the new data to the existing data
|
32 |
+
new_data_df = pd.DataFrame(correction_data)
|
33 |
+
updated_df = pd.concat([existing_df, new_data_df], ignore_index=True)
|
34 |
+
|
35 |
+
# Convert the DataFrame back to CSV and upload
|
36 |
+
updated_csv_data = updated_df.to_csv(index=False)
|
37 |
+
blob.upload_from_string(updated_csv_data, content_type='text/csv')
|
38 |
+
|
39 |
+
def show_deteksi_konten():
|
40 |
+
st.markdown(COMMON_CSS, unsafe_allow_html=True)
|
41 |
+
|
42 |
+
if 'correction' not in st.session_state:
|
43 |
+
st.session_state.correction = None
|
44 |
+
if 'detection_result' not in st.session_state:
|
45 |
+
st.session_state.detection_result = None
|
46 |
+
if 'lime_explanation' not in st.session_state:
|
47 |
+
st.session_state.lime_explanation = None
|
48 |
+
if 'headline' not in st.session_state:
|
49 |
+
st.session_state.headline = ""
|
50 |
+
if 'content' not in st.session_state:
|
51 |
+
st.session_state.content = ""
|
52 |
+
if 'is_correct' not in st.session_state:
|
53 |
+
st.session_state.is_correct = None
|
54 |
+
|
55 |
+
# Dropdown for selecting a model
|
56 |
+
st.markdown("<h6 style='font-size: 14px; margin-bottom: 0;'>Pilih Model</h6>", unsafe_allow_html=True)
|
57 |
+
selected_model = st.selectbox(
|
58 |
+
"",
|
59 |
+
[
|
60 |
+
"cahya/bert-base-indonesian-522M",
|
61 |
+
"indobenchmark/indobert-base-p2",
|
62 |
+
"indolem/indobert-base-uncased",
|
63 |
+
"mdhugol/indonesia-bert-sentiment-classification"
|
64 |
+
],
|
65 |
+
key="model_selector_content"
|
66 |
+
)
|
67 |
+
|
68 |
+
# Load the selected model
|
69 |
+
tokenizer, model = load_model(selected_model)
|
70 |
+
|
71 |
+
st.markdown("<h6 style='font-size: 14px; margin-bottom: 0;'>Masukkan Judul Berita :</h6>", unsafe_allow_html=True)
|
72 |
+
st.session_state.headline = st.text_input("", value=st.session_state.headline)
|
73 |
+
|
74 |
+
st.markdown("<h6 style='font-size: 14px; margin-bottom: 0;'>Masukkan Konten Berita :</h6>", unsafe_allow_html=True)
|
75 |
+
st.session_state.content = st.text_area("", value=st.session_state.content)
|
76 |
+
|
77 |
+
# Detection button
|
78 |
+
if st.button("Deteksi", key="detect_content"):
|
79 |
+
st.session_state.detection_result = predict_hoax(st.session_state.headline, st.session_state.content)
|
80 |
+
st.success(f"Prediksi: {st.session_state.detection_result}")
|
81 |
+
|
82 |
+
# Prepare the text for LIME
|
83 |
+
lime_texts = [f"{st.session_state.headline} [SEP] {st.session_state.content}"]
|
84 |
+
|
85 |
+
# Add a spinner and progress bar to indicate processing
|
86 |
+
with st.spinner("Sedang memproses LIME, harap tunggu..."):
|
87 |
+
# Explain the prediction
|
88 |
+
explainer = LimeTextExplainer(class_names=['NON-HOAX', 'HOAX'])
|
89 |
+
explanation = explainer.explain_instance(lime_texts[0], predict_proba_for_lime, num_features=5, num_samples=1000)
|
90 |
+
|
91 |
+
# Save the LIME explanation in session state
|
92 |
+
st.session_state.lime_explanation = explanation.as_html()
|
93 |
+
|
94 |
+
# Display the detection result and LIME explanation if available
|
95 |
+
if st.session_state.lime_explanation:
|
96 |
+
lime_html = st.session_state.lime_explanation
|
97 |
+
|
98 |
+
# Inject CSS for font size adjustment
|
99 |
+
lime_html = f"""
|
100 |
+
<style>
|
101 |
+
.lime-text-explanation, .lime-highlight, .lime-classification,
|
102 |
+
.lime-text-explanation * {{
|
103 |
+
font-size: 14px !important;
|
104 |
+
}}
|
105 |
+
</style>
|
106 |
+
<div class="lime-text-explanation">
|
107 |
+
{lime_html}
|
108 |
+
</div>
|
109 |
+
"""
|
110 |
+
components.html(lime_html, height=200, scrolling=True)
|
111 |
+
|
112 |
+
# Display a radio button asking if the detection result is correct
|
113 |
+
if st.session_state.detection_result is not None:
|
114 |
+
st.markdown("<h6 style='font-size: 16px; margin-bottom: -150px;'>Apakah hasil deteksi sudah benar?</h6>", unsafe_allow_html=True)
|
115 |
+
st.session_state.is_correct = st.radio("", ("Ya", "Tidak"))
|
116 |
+
|
117 |
+
if st.session_state.is_correct == "Ya":
|
118 |
+
st.success("Deteksi sudah benar.")
|
119 |
+
else:
|
120 |
+
# Determine the correction based on the prediction
|
121 |
+
st.session_state.correction = "HOAX" if st.session_state.detection_result == "NON-HOAX" else "NON-HOAX"
|
122 |
+
|
123 |
+
# Display the correction DataFrame
|
124 |
+
correction_data = [{
|
125 |
+
'Title': st.session_state.headline,
|
126 |
+
'Content': st.session_state.content,
|
127 |
+
'Prediction': st.session_state.detection_result,
|
128 |
+
'Correction': st.session_state.correction,
|
129 |
+
'Timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
130 |
+
}]
|
131 |
+
|
132 |
+
# Save button
|
133 |
+
if st.button("Simpan"):
|
134 |
+
# Save the correction data to GCS
|
135 |
+
save_corrections_to_gcs("your-bucket-name", "koreksi_pengguna.csv", correction_data)
|
136 |
+
|
137 |
+
# Create a formatted string with CSS for alignment and multi-line content handling
|
138 |
+
formatted_text = f"""
|
139 |
+
<div style='font-size: 14px;'>
|
140 |
+
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Title</span> : <span style='white-space: pre-wrap;'>{st.session_state.headline}</span></p>
|
141 |
+
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Content</span> : <span style='white-space: pre-wrap;'>{st.session_state.content}</span></p>
|
142 |
+
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Prediction</span> : {st.session_state.detection_result}</p>
|
143 |
+
<p style='margin: 0;'><span style='display: inline-block; width: 120px; font-weight: bold;'>Correction</span> : {st.session_state.correction}</p>
|
144 |
+
</div>
|
145 |
+
"""
|
146 |
+
|
147 |
+
# Display the correction as text
|
148 |
+
st.markdown(formatted_text, unsafe_allow_html=True)
|
149 |
+
st.success("Koreksi telah disimpan.")
|