import streamlit as st from datetime import datetime import pandas as pd from lime.lime_text import LimeTextExplainer from test import predict_hoax, predict_proba_for_lime import streamlit.components.v1 as components from load_model import load_model from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode from styles import COMMON_CSS from google.cloud import storage import os from io import StringIO # Set environment variable for Google Cloud credentials os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "D:\DashboardHoax\inbound-source-431806-g7-e49e388ce0be.json" def save_corrections_to_gcs(bucket_name, file_name, correction_data): client = storage.Client() # Uses the credentials set by the environment variable bucket = client.bucket("dashboardhoax-bucket") blob = bucket.blob("koreksi_pengguna_content.csv") # Check if the blob (file) exists if blob.exists(): # Download existing CSV from GCS existing_data = blob.download_as_string().decode('utf-8') existing_df = pd.read_csv(StringIO(existing_data)) else: # Create a new DataFrame if the file does not exist existing_df = pd.DataFrame(columns=['Timestamp', 'Title', 'Content', 'Prediction', 'Correction']) # Append the new data to the existing data new_data_df = pd.DataFrame(correction_data) updated_df = pd.concat([existing_df, new_data_df], ignore_index=True) # Convert the DataFrame back to CSV and upload updated_csv_data = updated_df.to_csv(index=False) blob.upload_from_string(updated_csv_data, content_type='text/csv') def show_deteksi_konten(): st.markdown(COMMON_CSS, unsafe_allow_html=True) if 'correction' not in st.session_state: st.session_state.correction = None if 'detection_result' not in st.session_state: st.session_state.detection_result = None if 'lime_explanation' not in st.session_state: st.session_state.lime_explanation = None if 'headline' not in st.session_state: st.session_state.headline = "" if 'content' not in st.session_state: st.session_state.content = "" if 'is_correct' not in st.session_state: st.session_state.is_correct = None # Dropdown for selecting a model st.markdown("
Pilih Model
", unsafe_allow_html=True) selected_model = st.selectbox( "", [ "cahya/bert-base-indonesian-522M", "indobenchmark/indobert-base-p2", "indolem/indobert-base-uncased", "mdhugol/indonesia-bert-sentiment-classification" ], key="model_selector_content" ) # Load the selected model tokenizer, model = load_model(selected_model) st.markdown("
Masukkan Judul Berita :
", unsafe_allow_html=True) st.session_state.headline = st.text_input("", value=st.session_state.headline) st.markdown("
Masukkan Konten Berita :
", unsafe_allow_html=True) st.session_state.content = st.text_area("", value=st.session_state.content) # Detection button if st.button("Deteksi", key="detect_content"): st.session_state.detection_result = predict_hoax(st.session_state.headline, st.session_state.content) st.success(f"Prediksi: {st.session_state.detection_result}") # Prepare the text for LIME lime_texts = [f"{st.session_state.headline} [SEP] {st.session_state.content}"] # Add a spinner and progress bar to indicate processing with st.spinner("Sedang memproses LIME, harap tunggu..."): # Explain the prediction explainer = LimeTextExplainer(class_names=['NON-HOAX', 'HOAX']) explanation = explainer.explain_instance(lime_texts[0], predict_proba_for_lime, num_features=5, num_samples=1000) # Save the LIME explanation in session state st.session_state.lime_explanation = explanation.as_html() # Display the detection result and LIME explanation if available if st.session_state.lime_explanation: lime_html = st.session_state.lime_explanation # Inject CSS for font size adjustment lime_html = f"""
{lime_html}
""" components.html(lime_html, height=200, scrolling=True) # Display a radio button asking if the detection result is correct if st.session_state.detection_result is not None: st.markdown("
Apakah hasil deteksi sudah benar?
", unsafe_allow_html=True) st.session_state.is_correct = st.radio("", ("Ya", "Tidak")) if st.session_state.is_correct == "Ya": st.success("Deteksi sudah benar.") else: # Determine the correction based on the prediction st.session_state.correction = "HOAX" if st.session_state.detection_result == "NON-HOAX" else "NON-HOAX" # Display the correction DataFrame correction_data = [{ 'Title': st.session_state.headline, 'Content': st.session_state.content, 'Prediction': st.session_state.detection_result, 'Correction': st.session_state.correction, 'Timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S") }] # Save button if st.button("Simpan"): # Save the correction data to GCS save_corrections_to_gcs("your-bucket-name", "koreksi_pengguna.csv", correction_data) # Create a formatted string with CSS for alignment and multi-line content handling formatted_text = f"""

Title : {st.session_state.headline}

Content : {st.session_state.content}

Prediction : {st.session_state.detection_result}

Correction : {st.session_state.correction}

""" # Display the correction as text st.markdown(formatted_text, unsafe_allow_html=True) st.success("Koreksi telah disimpan.")