BM25-Index / app.py
Finn
fix codebase imports try 2
e29e554
raw
history blame
10.3 kB
from __future__ import annotations
from dataclasses import dataclass
import pickle
import os
from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar
from nlp4web_codebase.ir.data_loaders.dm import Document
from collections import Counter
import tqdm
import re
import nltk
nltk.download("stopwords", quiet=True)
from nltk.corpus import stopwords as nltk_stopwords
LANGUAGE = "english"
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall
stopwords = set(nltk_stopwords.words(LANGUAGE))
def word_splitting(text: str) -> List[str]:
return word_splitter(text.lower())
def lemmatization(words: List[str]) -> List[str]:
return words # We ignore lemmatization here for simplicity
def simple_tokenize(text: str) -> List[str]:
words = word_splitting(text)
tokenized = list(filter(lambda w: w not in stopwords, words))
tokenized = lemmatization(tokenized)
return tokenized
T = TypeVar("T", bound="InvertedIndex")
@dataclass
class PostingList:
term: str # The term
docid_postings: List[int] # docid_postings[i] means the docid (int) of the i-th associated posting
tweight_postings: List[float] # tweight_postings[i] means the term weight (float) of the i-th associated posting
@dataclass
class InvertedIndex:
posting_lists: List[PostingList] # docid -> posting_list
vocab: Dict[str, int]
cid2docid: Dict[str, int] # collection_id -> docid
collection_ids: List[str] # docid -> collection_id
doc_texts: Optional[List[str]] = None # docid -> document text
def save(self, output_dir: str) -> None:
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
pickle.dump(self, f)
@classmethod
def from_saved(cls: Type[T], saved_dir: str) -> T:
index = cls(
posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
)
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
index = pickle.load(f)
return index
# The output of the counting function:
@dataclass
class Counting:
posting_lists: List[PostingList]
vocab: Dict[str, int]
cid2docid: Dict[str, int]
collection_ids: List[str]
dfs: List[int] # tid -> df
dls: List[int] # docid -> doc length
avgdl: float
nterms: int
doc_texts: Optional[List[str]] = None
def run_counting(
documents: Iterable[Document],
tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
store_raw: bool = True, # store the document text in doc_texts
ndocs: Optional[int] = None,
show_progress_bar: bool = True,
) -> Counting:
"""Counting TFs, DFs, doc_lengths, etc."""
posting_lists: List[PostingList] = []
vocab: Dict[str, int] = {}
cid2docid: Dict[str, int] = {}
collection_ids: List[str] = []
dfs: List[int] = [] # tid -> df
dls: List[int] = [] # docid -> doc length
nterms: int = 0
doc_texts: Optional[List[str]] = []
for doc in tqdm.tqdm(
documents,
desc="Counting",
total=ndocs,
disable=not show_progress_bar,
):
if doc.collection_id in cid2docid:
continue
collection_ids.append(doc.collection_id)
docid = cid2docid.setdefault(doc.collection_id, len(cid2docid))
toks = tokenize_fn(doc.text)
tok2tf = Counter(toks)
dls.append(sum(tok2tf.values()))
for tok, tf in tok2tf.items():
nterms += tf
tid = vocab.get(tok, None)
if tid is None:
posting_lists.append(
PostingList(term=tok, docid_postings=[], tweight_postings=[])
)
tid = vocab.setdefault(tok, len(vocab))
posting_lists[tid].docid_postings.append(docid)
posting_lists[tid].tweight_postings.append(tf)
if tid < len(dfs):
dfs[tid] += 1
else:
dfs.append(0)
if store_raw:
doc_texts.append(doc.text)
else:
doc_texts = None
return Counting(
posting_lists=posting_lists,
vocab=vocab,
cid2docid=cid2docid,
collection_ids=collection_ids,
dfs=dfs,
dls=dls,
avgdl=sum(dls) / len(dls),
nterms=nterms,
doc_texts=doc_texts,
)
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
sciq = load_sciq()
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
from dataclasses import asdict, dataclass
import math
import os
from typing import Iterable, List, Optional, Type
import tqdm
from nlp4web_codebase.ir.data_loaders.dm import Document
@dataclass
class BM25Index(InvertedIndex):
@staticmethod
def tokenize(text: str) -> List[str]:
return simple_tokenize(text)
@staticmethod
def cache_term_weights(
posting_lists: List[PostingList],
total_docs: int,
avgdl: float,
dfs: List[int],
dls: List[int],
k1: float,
b: float,
) -> None:
"""Compute term weights and caching"""
N = total_docs
for tid, posting_list in enumerate(
tqdm.tqdm(posting_lists, desc="Regularizing TFs")
):
idf = BM25Index.calc_idf(df=dfs[tid], N=N)
for i in range(len(posting_list.docid_postings)):
docid = posting_list.docid_postings[i]
tf = posting_list.tweight_postings[i]
dl = dls[docid]
regularized_tf = BM25Index.calc_regularized_tf(
tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
)
posting_list.tweight_postings[i] = regularized_tf * idf
@staticmethod
def calc_regularized_tf(
tf: int, dl: float, avgdl: float, k1: float, b: float
) -> float:
return tf / (tf + k1 * (1 - b + b * dl / avgdl))
@staticmethod
def calc_idf(df: int, N: int):
return math.log(1 + (N - df + 0.5) / (df + 0.5))
@classmethod
def build_from_documents(
cls: Type[BM25Index],
documents: Iterable[Document],
store_raw: bool = True,
output_dir: Optional[str] = None,
ndocs: Optional[int] = None,
show_progress_bar: bool = True,
k1: float = 0.9,
b: float = 0.4,
) -> BM25Index:
# Counting TFs, DFs, doc_lengths, etc.:
counting = run_counting(
documents=documents,
tokenize_fn=BM25Index.tokenize,
store_raw=store_raw,
ndocs=ndocs,
show_progress_bar=show_progress_bar,
)
# Compute term weights and caching:
posting_lists = counting.posting_lists
total_docs = len(counting.cid2docid)
BM25Index.cache_term_weights(
posting_lists=posting_lists,
total_docs=total_docs,
avgdl=counting.avgdl,
dfs=counting.dfs,
dls=counting.dls,
k1=k1,
b=b,
)
# Assembly and save:
index = BM25Index(
posting_lists=posting_lists,
vocab=counting.vocab,
cid2docid=counting.cid2docid,
collection_ids=counting.collection_ids,
doc_texts=counting.doc_texts,
)
return index
from nlp4web_codebase.ir.models import BaseRetriever
from typing import Type
from abc import abstractmethod
class BaseInvertedIndexRetriever(BaseRetriever):
@property
@abstractmethod
def index_class(self) -> Type[InvertedIndex]:
pass
def __init__(self, index_dir: str) -> None:
self.index = self.index_class.from_saved(index_dir)
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
toks = self.index.tokenize(query)
target_docid = self.index.cid2docid[cid]
term_weights = {}
for tok in toks:
if tok not in self.index.vocab:
continue
tid = self.index.vocab[tok]
posting_list = self.index.posting_lists[tid]
for docid, tweight in zip(
posting_list.docid_postings, posting_list.tweight_postings
):
if docid == target_docid:
term_weights[tok] = tweight
break
return term_weights
def score(self, query: str, cid: str) -> float:
return sum(self.get_term_weights(query=query, cid=cid).values())
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
toks = self.index.tokenize(query)
docid2score: Dict[int, float] = {}
for tok in toks:
if tok not in self.index.vocab:
continue
tid = self.index.vocab[tok]
posting_list = self.index.posting_lists[tid]
for docid, tweight in zip(
posting_list.docid_postings, posting_list.tweight_postings
):
docid2score.setdefault(docid, 0)
docid2score[docid] += tweight
docid2score = dict(
sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
)
return {
self.index.collection_ids[docid]: score
for docid, score in docid2score.items()
}
class BM25Retriever(BaseInvertedIndexRetriever):
@property
def index_class(self) -> Type[BM25Index]:
return BM25Index
import gradio as gr
from typing import TypedDict
class Hit(TypedDict):
cid: str
score: float
text: str
demo: Optional[gr.Interface] = None # Assign your gradio demo to this variable
return_type = List[Hit]
## YOUR_CODE_STARTS_HERE
def search(query: str) -> List[Hit]:
bm25_index = BM25Index.build_from_documents(
documents=iter(sciq.corpus),
ndocs=12160,
show_progress_bar=True
)
bm25_index.save("output/bm25_index")
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
results = bm25_retriever.retrieve(query)
hit: Hit = []
for result in results:
hit.append({'cid': result, 'score': results[result], 'text': bm25_index.doc_texts[bm25_index.cid2docid[result]]})
return hit
demo = gr.Interface(fn=search, inputs="textbox", outputs="textbox")
## YOUR_CODE_ENDS_HERE
demo.launch()