Spaces:
Sleeping
Sleeping
commit all
Browse files- app.py +89 -67
- vocab_source.pkl → vocab_source_final.pkl +2 -2
- vocab_target.pkl → vocab_target_final.pkl +2 -2
app.py
CHANGED
@@ -5,17 +5,15 @@ import pickle
|
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from torchtext.transforms import PadTransform
|
8 |
-
from torch.utils.data import Dataset, DataLoader
|
9 |
from torch.nn import functional as F
|
10 |
from tqdm import tqdm
|
11 |
-
from underthesea import
|
12 |
|
13 |
# Build Vocabulary
|
14 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
15 |
device = "cpu"
|
16 |
|
17 |
# Build Vocabulary
|
18 |
-
MAX_LENGTH =
|
19 |
class Vocabulary:
|
20 |
"""The Vocabulary class is used to record words, which are used to convert
|
21 |
text to numbers and vice versa.
|
@@ -75,14 +73,22 @@ class Vocabulary:
|
|
75 |
def preprocessing_sent(self, sent, lang="en"):
|
76 |
"""Preprocessing a sentence (depend on language english or vietnamese)
|
77 |
@param sent (str)
|
78 |
-
@param lang (str)
|
79 |
"""
|
80 |
|
81 |
# Lowercase sentence and remove space at beginning and ending
|
82 |
sent = sent.lower().strip()
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
# Remove unnecessary space
|
85 |
sent = re.sub("(?<=\w)\.", " .", sent)
|
|
|
|
|
86 |
sent = re.sub("(?<=\w),", " ,", sent)
|
87 |
sent = re.sub("(?<=\w)\?", " ?", sent)
|
88 |
sent = re.sub("(?<=\w)\!", " !", sent)
|
@@ -93,10 +99,12 @@ class Vocabulary:
|
|
93 |
sent = re.sub("what's", "what is", sent)
|
94 |
sent = re.sub("who's", "who is", sent)
|
95 |
sent = re.sub("which's", "which is", sent)
|
|
|
|
|
|
|
|
|
96 |
|
97 |
sent = re.sub("i'm", "i am", sent)
|
98 |
-
# Dont know to preprocess with possessive case
|
99 |
-
sent = re.sub("it's", "it is", sent)
|
100 |
sent = re.sub("'re ", " are ", sent)
|
101 |
sent = re.sub("'ve ", " have ", sent)
|
102 |
sent = re.sub("'ll ", " will ", sent)
|
@@ -115,7 +123,8 @@ class Vocabulary:
|
|
115 |
else:
|
116 |
# Package underthesea.text_normalize support to normalize vietnamese
|
117 |
sent = text_normalize(sent)
|
118 |
-
|
|
|
119 |
return sent.strip()
|
120 |
|
121 |
def tokenize_corpus(self, corpus, disable=False):
|
@@ -165,40 +174,51 @@ class Vocabulary:
|
|
165 |
return corpus
|
166 |
|
167 |
|
168 |
-
with open("
|
169 |
VOCAB_SOURCE = pickle.load(file)
|
170 |
-
with open("
|
171 |
VOCAB_TARGET = pickle.load(file)
|
172 |
|
173 |
input_embedding = torch.zeros((len(VOCAB_SOURCE), 100))
|
174 |
output_embedding = torch.zeros((len(VOCAB_TARGET), 100))
|
175 |
|
176 |
|
177 |
-
def create_input_emb_layer():
|
178 |
-
|
|
|
|
|
|
|
|
|
179 |
emb_layer = nn.Embedding(num_embeddings, embedding_dim)
|
|
|
180 |
emb_layer.weight.requires_grad = False
|
|
|
181 |
return emb_layer, embedding_dim
|
182 |
|
183 |
-
def create_output_emb_layer():
|
184 |
-
|
|
|
|
|
|
|
|
|
185 |
emb_layer = nn.Embedding(num_embeddings, embedding_dim)
|
|
|
186 |
emb_layer.weight.requires_grad = False
|
|
|
187 |
return emb_layer, embedding_dim
|
188 |
|
189 |
|
190 |
-
class
|
191 |
def __init__(self, input_dim, hidden_dim, dropout = 0.1):
|
192 |
""" Encoder RNN
|
193 |
@param input_dim (int): size of vocab_souce
|
194 |
@param hidden_dim (int)
|
195 |
@param dropout (float): dropout ratio of layer drop out
|
196 |
"""
|
197 |
-
super(
|
198 |
self.hidden_dim = hidden_dim
|
199 |
-
#
|
200 |
-
|
201 |
-
self.embedding, self.embedding_dim = create_input_emb_layer()
|
202 |
self.gru = nn.GRU(self.embedding_dim, hidden_dim, batch_first=True)
|
203 |
self.dropout = nn.Dropout(dropout)
|
204 |
|
@@ -207,7 +227,6 @@ class EncoderRNN(nn.Module):
|
|
207 |
output, hidden = self.gru(embedded)
|
208 |
return output, hidden
|
209 |
|
210 |
-
|
211 |
class BahdanauAttention(nn.Module):
|
212 |
def __init__(self, hidden_size):
|
213 |
""" Bahdanau Attention
|
@@ -227,20 +246,21 @@ class BahdanauAttention(nn.Module):
|
|
227 |
|
228 |
return context, weights
|
229 |
|
230 |
-
class
|
231 |
-
def __init__(self, hidden_size, output_size,
|
232 |
""" Decoder RNN using Attention
|
233 |
@param hidden_size (int)
|
234 |
@param output_size (int): size of vocab_target
|
235 |
@param dropout (float): dropout ratio of layer drop out
|
236 |
"""
|
237 |
-
super(
|
238 |
-
|
|
|
239 |
self.fc = nn.Linear(self.embedding_dim, hidden_size)
|
240 |
self.attention = BahdanauAttention(hidden_size)
|
241 |
self.gru = nn.GRU(2 * hidden_size, hidden_size, batch_first=True)
|
242 |
self.out = nn.Linear(hidden_size, output_size)
|
243 |
-
self.dropout = nn.Dropout(
|
244 |
|
245 |
def forward(self, encoder_outputs, encoder_hidden, target_tensor=None):
|
246 |
batch_size = encoder_outputs.size(0)
|
@@ -293,13 +313,13 @@ OUTPUT_DIM = len(VOCAB_TARGET)
|
|
293 |
HID_DIM = 512
|
294 |
|
295 |
# Load our Model Translation
|
296 |
-
ENCODER =
|
297 |
-
ENCODER.load_state_dict(torch.load("hid512_encoder_att_epoch_20.pt"))
|
298 |
-
DECODER =
|
299 |
-
DECODER.load_state_dict(torch.load("hid512_decoder_att_epoch_20.pt"))
|
300 |
|
301 |
|
302 |
-
def
|
303 |
encoder.eval()
|
304 |
decoder.eval()
|
305 |
with torch.no_grad():
|
@@ -326,12 +346,14 @@ def evaluate(encoder, decoder, sentence, vocab_source, vocab_target, disable=Fal
|
|
326 |
return decoded_words, decoder_attn
|
327 |
|
328 |
|
329 |
-
def
|
330 |
-
output_words, _ =
|
331 |
-
|
332 |
-
)
|
|
|
|
|
333 |
|
334 |
-
return
|
335 |
|
336 |
|
337 |
def envit5_translation(text):
|
@@ -339,44 +361,44 @@ def envit5_translation(text):
|
|
339 |
text,
|
340 |
max_length=512,
|
341 |
early_stopping=True,
|
342 |
-
)[0][
|
343 |
-
"translation_text"
|
344 |
-
][3:]
|
345 |
return res
|
346 |
|
347 |
|
348 |
def translation(text):
|
349 |
-
|
|
|
|
|
|
|
350 |
output2 = envit5_translation(text)
|
351 |
-
#output3 = finetune_BERT(text)
|
352 |
|
353 |
return (output1, output2)
|
354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
-
|
357 |
-
["Output: Xin chào các bạn"]]
|
358 |
-
|
359 |
-
demo = gr.Interface(
|
360 |
-
theme = gr.themes.Base(),
|
361 |
-
fn=translation,
|
362 |
-
title="Co Gai Mo Duong",
|
363 |
-
description="""
|
364 |
-
## Machine Translation: English to Vietnamese
|
365 |
-
""",
|
366 |
-
examples=examples,
|
367 |
-
inputs=[
|
368 |
-
gr.Textbox(
|
369 |
-
lines=5, placeholder="Enter text", label="Input"
|
370 |
-
)
|
371 |
-
],
|
372 |
-
outputs=[
|
373 |
-
gr.Textbox(
|
374 |
-
"text", label="Our Machine Translation"
|
375 |
-
),
|
376 |
-
gr.Textbox(
|
377 |
-
"text", label="VietAI Machine Translation"
|
378 |
-
)
|
379 |
-
]
|
380 |
-
)
|
381 |
-
|
382 |
-
demo.launch(share = True)
|
|
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from torchtext.transforms import PadTransform
|
|
|
8 |
from torch.nn import functional as F
|
9 |
from tqdm import tqdm
|
10 |
+
from underthesea import text_normalize
|
11 |
|
12 |
# Build Vocabulary
|
|
|
13 |
device = "cpu"
|
14 |
|
15 |
# Build Vocabulary
|
16 |
+
MAX_LENGTH = 20
|
17 |
class Vocabulary:
|
18 |
"""The Vocabulary class is used to record words, which are used to convert
|
19 |
text to numbers and vice versa.
|
|
|
73 |
def preprocessing_sent(self, sent, lang="en"):
|
74 |
"""Preprocessing a sentence (depend on language english or vietnamese)
|
75 |
@param sent (str)
|
76 |
+
@param lang (str)
|
77 |
"""
|
78 |
|
79 |
# Lowercase sentence and remove space at beginning and ending
|
80 |
sent = sent.lower().strip()
|
81 |
|
82 |
+
# Replace HTML charecterist
|
83 |
+
sent = re.sub("'", "'", sent)
|
84 |
+
sent = re.sub(""", '"', sent)
|
85 |
+
sent = re.sub("[", "[", sent)
|
86 |
+
sent = re.sub("]", "]", sent)
|
87 |
+
|
88 |
# Remove unnecessary space
|
89 |
sent = re.sub("(?<=\w)\.", " .", sent)
|
90 |
+
|
91 |
+
# Normalizing the distance between tokens (word and punctuation)
|
92 |
sent = re.sub("(?<=\w),", " ,", sent)
|
93 |
sent = re.sub("(?<=\w)\?", " ?", sent)
|
94 |
sent = re.sub("(?<=\w)\!", " !", sent)
|
|
|
99 |
sent = re.sub("what's", "what is", sent)
|
100 |
sent = re.sub("who's", "who is", sent)
|
101 |
sent = re.sub("which's", "which is", sent)
|
102 |
+
sent = re.sub("who's", "who is", sent)
|
103 |
+
sent = re.sub("here's", "here is", sent)
|
104 |
+
sent = re.sub("there's", "there is", sent)
|
105 |
+
sent = re.sub("it's", "it is", sent)
|
106 |
|
107 |
sent = re.sub("i'm", "i am", sent)
|
|
|
|
|
108 |
sent = re.sub("'re ", " are ", sent)
|
109 |
sent = re.sub("'ve ", " have ", sent)
|
110 |
sent = re.sub("'ll ", " will ", sent)
|
|
|
123 |
else:
|
124 |
# Package underthesea.text_normalize support to normalize vietnamese
|
125 |
sent = text_normalize(sent)
|
126 |
+
if not sent.endswith(('.', '!', '?')):
|
127 |
+
sent = sent + ' .'
|
128 |
return sent.strip()
|
129 |
|
130 |
def tokenize_corpus(self, corpus, disable=False):
|
|
|
174 |
return corpus
|
175 |
|
176 |
|
177 |
+
with open("vocab_source_final.pkl", "rb") as file:
|
178 |
VOCAB_SOURCE = pickle.load(file)
|
179 |
+
with open("vocab_target_final.pkl", "rb") as file:
|
180 |
VOCAB_TARGET = pickle.load(file)
|
181 |
|
182 |
input_embedding = torch.zeros((len(VOCAB_SOURCE), 100))
|
183 |
output_embedding = torch.zeros((len(VOCAB_TARGET), 100))
|
184 |
|
185 |
|
186 |
+
def create_input_emb_layer(pretrained = False):
|
187 |
+
if not pretrained:
|
188 |
+
weights_matrix = torch.zeros((len(VOCAB_SOURCE), 100))
|
189 |
+
else:
|
190 |
+
weights_matrix = input_embedding
|
191 |
+
num_embeddings, embedding_dim = weights_matrix.size()
|
192 |
emb_layer = nn.Embedding(num_embeddings, embedding_dim)
|
193 |
+
emb_layer.weight.data = weights_matrix
|
194 |
emb_layer.weight.requires_grad = False
|
195 |
+
|
196 |
return emb_layer, embedding_dim
|
197 |
|
198 |
+
def create_output_emb_layer(pretrained = False):
|
199 |
+
if not pretrained:
|
200 |
+
weights_matrix = torch.zeros((len(VOCAB_TARGET), 100))
|
201 |
+
else:
|
202 |
+
weights_matrix = output_embedding
|
203 |
+
num_embeddings, embedding_dim = weights_matrix.size()
|
204 |
emb_layer = nn.Embedding(num_embeddings, embedding_dim)
|
205 |
+
emb_layer.weight.data = weights_matrix
|
206 |
emb_layer.weight.requires_grad = False
|
207 |
+
|
208 |
return emb_layer, embedding_dim
|
209 |
|
210 |
|
211 |
+
class EncoderAtt(nn.Module):
|
212 |
def __init__(self, input_dim, hidden_dim, dropout = 0.1):
|
213 |
""" Encoder RNN
|
214 |
@param input_dim (int): size of vocab_souce
|
215 |
@param hidden_dim (int)
|
216 |
@param dropout (float): dropout ratio of layer drop out
|
217 |
"""
|
218 |
+
super(EncoderAtt, self).__init__()
|
219 |
self.hidden_dim = hidden_dim
|
220 |
+
# Using pretrained Embedding
|
221 |
+
self.embedding, self.embedding_dim = create_input_emb_layer(True)
|
|
|
222 |
self.gru = nn.GRU(self.embedding_dim, hidden_dim, batch_first=True)
|
223 |
self.dropout = nn.Dropout(dropout)
|
224 |
|
|
|
227 |
output, hidden = self.gru(embedded)
|
228 |
return output, hidden
|
229 |
|
|
|
230 |
class BahdanauAttention(nn.Module):
|
231 |
def __init__(self, hidden_size):
|
232 |
""" Bahdanau Attention
|
|
|
246 |
|
247 |
return context, weights
|
248 |
|
249 |
+
class DecoderAtt(nn.Module):
|
250 |
+
def __init__(self, hidden_size, output_size, dropout=0.1):
|
251 |
""" Decoder RNN using Attention
|
252 |
@param hidden_size (int)
|
253 |
@param output_size (int): size of vocab_target
|
254 |
@param dropout (float): dropout ratio of layer drop out
|
255 |
"""
|
256 |
+
super(DecoderAtt, self).__init__()
|
257 |
+
# Using pretrained Embedding
|
258 |
+
self.embedding, self.embedding_dim = create_output_emb_layer(True)
|
259 |
self.fc = nn.Linear(self.embedding_dim, hidden_size)
|
260 |
self.attention = BahdanauAttention(hidden_size)
|
261 |
self.gru = nn.GRU(2 * hidden_size, hidden_size, batch_first=True)
|
262 |
self.out = nn.Linear(hidden_size, output_size)
|
263 |
+
self.dropout = nn.Dropout(dropout)
|
264 |
|
265 |
def forward(self, encoder_outputs, encoder_hidden, target_tensor=None):
|
266 |
batch_size = encoder_outputs.size(0)
|
|
|
313 |
HID_DIM = 512
|
314 |
|
315 |
# Load our Model Translation
|
316 |
+
ENCODER = EncoderAtt(INPUT_DIM, HID_DIM)
|
317 |
+
#ENCODER.load_state_dict(torch.load("hid512_encoder_att_epoch_20.pt"), map_location=torch.device('cpu'))
|
318 |
+
DECODER = DecoderAtt(HID_DIM, OUTPUT_DIM)
|
319 |
+
#DECODER.load_state_dict(torch.load("hid512_decoder_att_epoch_20.pt"), map_location=torch.device('cpu'))
|
320 |
|
321 |
|
322 |
+
def evaluate_final_model(encoder, decoder, sentence, vocab_source, vocab_target, disable=False):
|
323 |
encoder.eval()
|
324 |
decoder.eval()
|
325 |
with torch.no_grad():
|
|
|
346 |
return decoded_words, decoder_attn
|
347 |
|
348 |
|
349 |
+
def my_translation(sentence):
|
350 |
+
output_words, _ = evaluate_final_model(sentence, ENCODER, DECODER, VOCAB_SOURCE, VOCAB_TARGET, disable= True)
|
351 |
+
output_words = output_words.remove("<pad>")
|
352 |
+
output_words = output_words.remove("<unk>")
|
353 |
+
output_words = output_words.remove("<sos>")
|
354 |
+
output_words = output_words.remove("<eos>")
|
355 |
|
356 |
+
return ' '.join(output_words[1:-1]).capitalize()
|
357 |
|
358 |
|
359 |
def envit5_translation(text):
|
|
|
361 |
text,
|
362 |
max_length=512,
|
363 |
early_stopping=True,
|
364 |
+
)[0]["translation_text"][3:]
|
|
|
|
|
365 |
return res
|
366 |
|
367 |
|
368 |
def translation(text):
|
369 |
+
if not text.endswith(('.', '!', '?')):
|
370 |
+
text = text + '.'
|
371 |
+
#output1 = my_translation(text)
|
372 |
+
output1 = "Something"
|
373 |
output2 = envit5_translation(text)
|
|
|
374 |
|
375 |
return (output1, output2)
|
376 |
|
377 |
+
if __name__ == "__main__":
|
378 |
+
examples = [["Hello guys", "Input"],
|
379 |
+
["Xin chào các bạn", "Output"]]
|
380 |
+
|
381 |
+
demo = gr.Interface(
|
382 |
+
theme = gr.themes.Base(),
|
383 |
+
fn=translation,
|
384 |
+
title="Co Gai Mo Duong",
|
385 |
+
description="""
|
386 |
+
## Machine Translation: English to Vietnamese
|
387 |
+
""",
|
388 |
+
examples=examples,
|
389 |
+
inputs=[
|
390 |
+
gr.Textbox(
|
391 |
+
lines=5, placeholder="Enter text", label="Input"
|
392 |
+
)
|
393 |
+
],
|
394 |
+
outputs=[
|
395 |
+
gr.Textbox(
|
396 |
+
"text", label="Our Machine Translation"
|
397 |
+
),
|
398 |
+
gr.Textbox(
|
399 |
+
"text", label="VietAI Machine Translation"
|
400 |
+
)
|
401 |
+
]
|
402 |
+
)
|
403 |
|
404 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vocab_source.pkl → vocab_source_final.pkl
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:470ea7a4a120e9c2274db2ad7f5b68241eb1cea444881852245013ef91f69106
|
3 |
+
size 682848
|
vocab_target.pkl → vocab_target_final.pkl
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:853cf7ecce86d078c1a8cf81b867f55454d1b7bf21679832fea8391711198c6f
|
3 |
+
size 250477
|