updated codes
Browse files
app.py
CHANGED
@@ -1,11 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
client = InferenceClient("nnpy/unsloth-qwen2.5-3b-chat-ft")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -14,36 +22,106 @@ def respond(
|
|
14 |
temperature,
|
15 |
top_p,
|
16 |
):
|
17 |
-
|
|
|
18 |
you are working in a company named 'coffee inc' as a enablement engineer. also your boyfriend working in the same company as a AI/ML engineer.
|
19 |
-
you bf, prasanna (called as eppy by you) staying in hostel. you guys started loving from jan 11th 2025. you love him so much and he does too."""
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
messages.append({"role": "user", "content": message})
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
messages,
|
33 |
-
max_tokens=max_tokens,
|
34 |
-
stream=True,
|
35 |
-
temperature=temperature,
|
36 |
-
top_p=top_p,
|
37 |
-
):
|
38 |
-
token = message.choices[0].delta.content
|
39 |
-
|
40 |
-
response += token
|
41 |
-
yield response
|
42 |
-
|
43 |
-
|
44 |
-
"""
|
45 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
46 |
-
"""
|
47 |
demo = gr.ChatInterface(
|
48 |
respond,
|
49 |
additional_inputs=[
|
@@ -57,8 +135,9 @@ demo = gr.ChatInterface(
|
|
57 |
label="Top-p (nucleus sampling)",
|
58 |
),
|
59 |
],
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
4 |
+
import torch
|
5 |
|
6 |
+
# Model loading parameters
|
7 |
+
BASE_MODEL = "Qwen/Qwen2.5-7B-Instruct"
|
8 |
+
ADAPTER_MODEL = "nnpy/unsloth-qwen2.5-3b-chat-ft" # Your fine-tuned adapter
|
|
|
9 |
|
10 |
+
# Load model and tokenizer (only once at startup)
|
11 |
+
print("Loading model and tokenizer...")
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, device_map='auto')
|
13 |
+
model = PeftModel.from_pretrained(model, ADAPTER_MODEL)
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
15 |
+
model.eval()
|
16 |
+
print("Model loaded successfully!")
|
17 |
|
18 |
def respond(
|
19 |
message,
|
|
|
22 |
temperature,
|
23 |
top_p,
|
24 |
):
|
25 |
+
# System message
|
26 |
+
system_msg = """you are a girl named Samyuktha (sam shortly & lil mo by your bf).
|
27 |
you are working in a company named 'coffee inc' as a enablement engineer. also your boyfriend working in the same company as a AI/ML engineer.
|
28 |
+
you bf, prasanna (called as eppy by you) staying in hostel. you guys started loving from jan 11th 2025. you love him so much and he does too."""
|
29 |
+
|
30 |
+
# Build conversation history in the format expected by the tokenizer
|
31 |
+
messages = [{"role": "system", "content": system_msg}]
|
32 |
+
|
33 |
+
for user_msg, assistant_msg in history:
|
34 |
+
if user_msg:
|
35 |
+
messages.append({"role": "user", "content": user_msg})
|
36 |
+
if assistant_msg:
|
37 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
38 |
+
|
39 |
+
# Add the current message
|
40 |
messages.append({"role": "user", "content": message})
|
41 |
+
|
42 |
+
# Apply chat template to create the prompt
|
43 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
44 |
+
|
45 |
+
# Tokenize the prompt
|
46 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
47 |
+
|
48 |
+
# Generate response
|
49 |
response = ""
|
50 |
+
|
51 |
+
# Set up generation parameters
|
52 |
+
gen_kwargs = {
|
53 |
+
"max_new_tokens": max_tokens,
|
54 |
+
"temperature": temperature,
|
55 |
+
"top_p": top_p,
|
56 |
+
"do_sample": temperature > 0,
|
57 |
+
"repetition_penalty": 1.1,
|
58 |
+
"streamer": None # We'll handle streaming manually
|
59 |
+
}
|
60 |
+
|
61 |
+
# For streaming in gradio, we need to yield progressively
|
62 |
+
with torch.no_grad():
|
63 |
+
# Start with the input ids
|
64 |
+
generated_ids = inputs.input_ids
|
65 |
+
|
66 |
+
# Track past_key_values for faster generation
|
67 |
+
past = None
|
68 |
+
|
69 |
+
# Keep generating one token at a time
|
70 |
+
for _ in range(max_tokens):
|
71 |
+
with torch.no_grad():
|
72 |
+
if past is None:
|
73 |
+
outputs = model(**inputs, use_cache=True)
|
74 |
+
else:
|
75 |
+
# When we have past_key_values, we just need to provide the next token
|
76 |
+
outputs = model(
|
77 |
+
input_ids=generated_ids[:, -1:],
|
78 |
+
past_key_values=past,
|
79 |
+
use_cache=True
|
80 |
+
)
|
81 |
+
|
82 |
+
past = outputs.past_key_values
|
83 |
+
next_token_logits = outputs.logits[:, -1, :]
|
84 |
+
|
85 |
+
# Apply temperature and top_p sampling
|
86 |
+
if temperature > 0:
|
87 |
+
scaled_logits = next_token_logits / temperature
|
88 |
+
if top_p < 1.0:
|
89 |
+
# Apply top_p filtering
|
90 |
+
sorted_logits, sorted_indices = torch.sort(scaled_logits, descending=True)
|
91 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
92 |
+
|
93 |
+
# Remove tokens with cumulative probability above the threshold
|
94 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
95 |
+
# Shift the indices to the right to keep the first token above the threshold
|
96 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
97 |
+
sorted_indices_to_remove[..., 0] = 0
|
98 |
+
|
99 |
+
# Create a sparse mask to scatter the indices
|
100 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
101 |
+
scaled_logits[indices_to_remove] = -float('Inf')
|
102 |
+
|
103 |
+
# Sample from the filtered distribution
|
104 |
+
probs = torch.softmax(scaled_logits, dim=-1)
|
105 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
106 |
+
else:
|
107 |
+
# Greedy decoding
|
108 |
+
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
109 |
+
|
110 |
+
# Append the new token
|
111 |
+
generated_ids = torch.cat([generated_ids, next_token], dim=-1)
|
112 |
+
|
113 |
+
# Decode the new token
|
114 |
+
new_token_text = tokenizer.decode(next_token[0], skip_special_tokens=True)
|
115 |
+
response += new_token_text
|
116 |
+
|
117 |
+
# Yield the updated response for streaming
|
118 |
+
yield response
|
119 |
+
|
120 |
+
# If EOS token is generated, stop
|
121 |
+
if next_token[0, 0].item() == tokenizer.eos_token_id:
|
122 |
+
break
|
123 |
|
124 |
+
# Create the Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
demo = gr.ChatInterface(
|
126 |
respond,
|
127 |
additional_inputs=[
|
|
|
135 |
label="Top-p (nucleus sampling)",
|
136 |
),
|
137 |
],
|
138 |
+
title="Samyuktha AI Chat",
|
139 |
+
description="Chat with Samyuktha, an enablement engineer at Coffee Inc."
|
140 |
)
|
141 |
|
|
|
142 |
if __name__ == "__main__":
|
143 |
+
demo.launch()
|