|
from models.med import BertConfig, BertModel |
|
from transformers import BertTokenizer |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from models.blip import create_vit, init_tokenizer, load_checkpoint |
|
|
|
class BLIP_Retrieval(nn.Module): |
|
def __init__(self, |
|
med_config = 'configs/med_config.json', |
|
image_size = 384, |
|
vit = 'base', |
|
vit_grad_ckpt = False, |
|
vit_ckpt_layer = 0, |
|
embed_dim = 256, |
|
queue_size = 57600, |
|
momentum = 0.995, |
|
negative_all_rank = False, |
|
): |
|
""" |
|
Args: |
|
med_config (str): path for the mixture of encoder-decoder model's configuration file |
|
image_size (int): input image size |
|
vit (str): model size of vision transformer |
|
""" |
|
super().__init__() |
|
|
|
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) |
|
self.tokenizer = init_tokenizer() |
|
med_config = BertConfig.from_json_file(med_config) |
|
med_config.encoder_width = vision_width |
|
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) |
|
|
|
text_width = self.text_encoder.config.hidden_size |
|
|
|
self.vision_proj = nn.Linear(vision_width, embed_dim) |
|
self.text_proj = nn.Linear(text_width, embed_dim) |
|
|
|
self.itm_head = nn.Linear(text_width, 2) |
|
|
|
|
|
self.visual_encoder_m, vision_width = create_vit(vit,image_size) |
|
self.vision_proj_m = nn.Linear(vision_width, embed_dim) |
|
self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False) |
|
self.text_proj_m = nn.Linear(text_width, embed_dim) |
|
|
|
self.model_pairs = [[self.visual_encoder,self.visual_encoder_m], |
|
[self.vision_proj,self.vision_proj_m], |
|
[self.text_encoder,self.text_encoder_m], |
|
[self.text_proj,self.text_proj_m], |
|
] |
|
self.copy_params() |
|
|
|
|
|
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size)) |
|
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size)) |
|
self.register_buffer("idx_queue", torch.full((1,queue_size),-100)) |
|
self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long)) |
|
|
|
self.image_queue = nn.functional.normalize(self.image_queue, dim=0) |
|
self.text_queue = nn.functional.normalize(self.text_queue, dim=0) |
|
|
|
self.queue_size = queue_size |
|
self.momentum = momentum |
|
self.temp = nn.Parameter(0.07*torch.ones([])) |
|
|
|
self.negative_all_rank = negative_all_rank |
|
|
|
|
|
def forward(self, image, caption, alpha, idx): |
|
with torch.no_grad(): |
|
self.temp.clamp_(0.001,0.5) |
|
|
|
image_embeds = self.visual_encoder(image) |
|
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) |
|
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1) |
|
|
|
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35, |
|
return_tensors="pt").to(image.device) |
|
|
|
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, |
|
return_dict = True, mode = 'text') |
|
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1) |
|
|
|
|
|
idx = idx.view(-1,1) |
|
idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1) |
|
pos_idx = torch.eq(idx, idx_all).float() |
|
sim_targets = pos_idx / pos_idx.sum(1,keepdim=True) |
|
|
|
|
|
with torch.no_grad(): |
|
self._momentum_update() |
|
image_embeds_m = self.visual_encoder_m(image) |
|
image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1) |
|
image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1) |
|
|
|
text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask, |
|
return_dict = True, mode = 'text') |
|
text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1) |
|
text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1) |
|
|
|
sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp |
|
sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp |
|
|
|
sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets |
|
sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets |
|
|
|
sim_i2t = image_feat @ text_feat_m_all / self.temp |
|
sim_t2i = text_feat @ image_feat_m_all / self.temp |
|
|
|
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean() |
|
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean() |
|
|
|
loss_ita = (loss_i2t+loss_t2i)/2 |
|
|
|
idxs = concat_all_gather(idx) |
|
self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs) |
|
|
|
|
|
encoder_input_ids = text.input_ids.clone() |
|
encoder_input_ids[:,0] = self.tokenizer.enc_token_id |
|
|
|
|
|
bs = image.size(0) |
|
output_pos = self.text_encoder(encoder_input_ids, |
|
attention_mask = text.attention_mask, |
|
encoder_hidden_states = image_embeds, |
|
encoder_attention_mask = image_atts, |
|
return_dict = True, |
|
) |
|
|
|
|
|
if self.negative_all_rank: |
|
|
|
with torch.no_grad(): |
|
mask = torch.eq(idx, idxs.t()) |
|
|
|
image_feat_world = concat_all_gather(image_feat) |
|
text_feat_world = concat_all_gather(text_feat) |
|
|
|
sim_i2t = image_feat @ text_feat_world.t() / self.temp |
|
sim_t2i = text_feat @ image_feat_world.t() / self.temp |
|
|
|
weights_i2t = F.softmax(sim_i2t,dim=1) |
|
weights_i2t.masked_fill_(mask, 0) |
|
|
|
weights_t2i = F.softmax(sim_t2i,dim=1) |
|
weights_t2i.masked_fill_(mask, 0) |
|
|
|
image_embeds_world = all_gather_with_grad(image_embeds) |
|
|
|
|
|
image_embeds_neg = [] |
|
for b in range(bs): |
|
neg_idx = torch.multinomial(weights_t2i[b], 1).item() |
|
image_embeds_neg.append(image_embeds_world[neg_idx]) |
|
image_embeds_neg = torch.stack(image_embeds_neg,dim=0) |
|
|
|
|
|
input_ids_world = concat_all_gather(encoder_input_ids) |
|
att_mask_world = concat_all_gather(text.attention_mask) |
|
|
|
text_ids_neg = [] |
|
text_atts_neg = [] |
|
for b in range(bs): |
|
neg_idx = torch.multinomial(weights_i2t[b], 1).item() |
|
text_ids_neg.append(input_ids_world[neg_idx]) |
|
text_atts_neg.append(att_mask_world[neg_idx]) |
|
|
|
else: |
|
with torch.no_grad(): |
|
mask = torch.eq(idx, idx.t()) |
|
|
|
sim_i2t = image_feat @ text_feat.t() / self.temp |
|
sim_t2i = text_feat @ image_feat.t() / self.temp |
|
|
|
weights_i2t = F.softmax(sim_i2t,dim=1) |
|
weights_i2t.masked_fill_(mask, 0) |
|
|
|
weights_t2i = F.softmax(sim_t2i,dim=1) |
|
weights_t2i.masked_fill_(mask, 0) |
|
|
|
|
|
image_embeds_neg = [] |
|
for b in range(bs): |
|
neg_idx = torch.multinomial(weights_t2i[b], 1).item() |
|
image_embeds_neg.append(image_embeds[neg_idx]) |
|
image_embeds_neg = torch.stack(image_embeds_neg,dim=0) |
|
|
|
|
|
text_ids_neg = [] |
|
text_atts_neg = [] |
|
for b in range(bs): |
|
neg_idx = torch.multinomial(weights_i2t[b], 1).item() |
|
text_ids_neg.append(encoder_input_ids[neg_idx]) |
|
text_atts_neg.append(text.attention_mask[neg_idx]) |
|
|
|
text_ids_neg = torch.stack(text_ids_neg,dim=0) |
|
text_atts_neg = torch.stack(text_atts_neg,dim=0) |
|
|
|
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0) |
|
text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0) |
|
|
|
image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0) |
|
image_atts_all = torch.cat([image_atts,image_atts],dim=0) |
|
|
|
output_neg = self.text_encoder(text_ids_all, |
|
attention_mask = text_atts_all, |
|
encoder_hidden_states = image_embeds_all, |
|
encoder_attention_mask = image_atts_all, |
|
return_dict = True, |
|
) |
|
|
|
|
|
vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0) |
|
vl_output = self.itm_head(vl_embeddings) |
|
|
|
itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)], |
|
dim=0).to(image.device) |
|
loss_itm = F.cross_entropy(vl_output, itm_labels) |
|
|
|
return loss_ita, loss_itm |
|
|
|
|
|
@torch.no_grad() |
|
def copy_params(self): |
|
for model_pair in self.model_pairs: |
|
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()): |
|
param_m.data.copy_(param.data) |
|
param_m.requires_grad = False |
|
|
|
|
|
@torch.no_grad() |
|
def _momentum_update(self): |
|
for model_pair in self.model_pairs: |
|
for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()): |
|
param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum) |
|
|
|
|
|
@torch.no_grad() |
|
def _dequeue_and_enqueue(self, image_feat, text_feat, idxs): |
|
|
|
image_feats = concat_all_gather(image_feat) |
|
text_feats = concat_all_gather(text_feat) |
|
|
|
|
|
batch_size = image_feats.shape[0] |
|
|
|
ptr = int(self.ptr_queue) |
|
assert self.queue_size % batch_size == 0 |
|
|
|
|
|
self.image_queue[:, ptr:ptr + batch_size] = image_feats.T |
|
self.text_queue[:, ptr:ptr + batch_size] = text_feats.T |
|
self.idx_queue[:, ptr:ptr + batch_size] = idxs.T |
|
ptr = (ptr + batch_size) % self.queue_size |
|
|
|
self.ptr_queue[0] = ptr |
|
|
|
|
|
def blip_retrieval(pretrained='',**kwargs): |
|
model = BLIP_Retrieval(**kwargs) |
|
if pretrained: |
|
model,msg = load_checkpoint(model,pretrained) |
|
print("missing keys:") |
|
print(msg.missing_keys) |
|
return model |
|
|
|
|
|
@torch.no_grad() |
|
def concat_all_gather(tensor): |
|
""" |
|
Performs all_gather operation on the provided tensors. |
|
*** Warning ***: torch.distributed.all_gather has no gradient. |
|
""" |
|
tensors_gather = [torch.ones_like(tensor) |
|
for _ in range(torch.distributed.get_world_size())] |
|
torch.distributed.all_gather(tensors_gather, tensor, async_op=False) |
|
|
|
output = torch.cat(tensors_gather, dim=0) |
|
return output |
|
|
|
|
|
class GatherLayer(torch.autograd.Function): |
|
""" |
|
Gather tensors from all workers with support for backward propagation: |
|
This implementation does not cut the gradients as torch.distributed.all_gather does. |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, x): |
|
output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())] |
|
torch.distributed.all_gather(output, x) |
|
return tuple(output) |
|
|
|
@staticmethod |
|
def backward(ctx, *grads): |
|
all_gradients = torch.stack(grads) |
|
torch.distributed.all_reduce(all_gradients) |
|
return all_gradients[torch.distributed.get_rank()] |
|
|
|
|
|
def all_gather_with_grad(tensors): |
|
""" |
|
Performs all_gather operation on the provided tensors. |
|
Graph remains connected for backward grad computation. |
|
""" |
|
|
|
world_size = torch.distributed.get_world_size() |
|
|
|
if world_size == 1: |
|
return tensors |
|
|
|
tensor_all = GatherLayer.apply(tensors) |
|
|
|
return torch.cat(tensor_all, dim=0) |
|
|