noamrot's picture
demo fix commit
3fa9cd1
raw
history blame
1.92 kB
# import gradio as gr
# def greet(image):
# return "Shape " + image.shape + "!!"
# iface = gr.Interface(fn=greet, inputs="image", outputs="text")
# iface.launch()
import sys
from IPython.display import display, HTML
from BLIP.models.blip import blip_decoder
from google_drive_downloader import GoogleDriveDownloader as gdd
from PIL import Image
import requests
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from urllib.parse import urlparse
from google_drive_downloader import GoogleDriveDownloader as gdd
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
transform = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
model_url = "https://technionmail-my.sharepoint.com/personal/snoamr_campus_technion_ac_il/_layouts/15/download.aspx?share=EZxgXQaBXGREgDsQiaTcwAAB0z8jQA_hgAnwwPQDt8Dgew"
model = blip_decoder(pretrained=model_url, image_size=384, vit='base')
model.eval()
model = model.to(device)
def inference(raw_image):
image = transform(raw_image).unsqueeze(0).to(device)
with torch.no_grad():
caption = model.generate(image, sample=False, num_beams=1, max_length=60, min_length=5)
return caption[0]
inputs = [gr.Image(type='pil', interactive=False),]
outputs = gr.outputs.Textbox(label="Caption")
title = "FuseCap"
description = "Gradio demo for FuseCap: Leveraging Large Language Models to Fuse Visual Data into Enriched Image Captions. This demo features a BLIP-based model, trained using FuseCap."
article = "place holder"
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['birthday_dog.jpeg']]).launch(enable_queue=True)