|
from torch.utils.data import Dataset |
|
from torchvision.datasets.utils import download_url |
|
|
|
from PIL import Image |
|
import torch |
|
import numpy as np |
|
import random |
|
import decord |
|
from decord import VideoReader |
|
import json |
|
import os |
|
from data.utils import pre_caption |
|
|
|
decord.bridge.set_bridge("torch") |
|
|
|
class ImageNorm(object): |
|
"""Apply Normalization to Image Pixels on GPU |
|
""" |
|
def __init__(self, mean, std): |
|
self.mean = torch.tensor(mean).view(1, 3, 1, 1) |
|
self.std = torch.tensor(std).view(1, 3, 1, 1) |
|
|
|
def __call__(self, img): |
|
|
|
if torch.max(img) > 1 and self.mean.max() <= 1: |
|
img.div_(255.) |
|
return img.sub_(self.mean).div_(self.std) |
|
|
|
def load_jsonl(filename): |
|
with open(filename, "r") as f: |
|
return [json.loads(l.strip("\n")) for l in f.readlines()] |
|
|
|
|
|
class VideoDataset(Dataset): |
|
|
|
def __init__(self, video_root, ann_root, num_frm=4, frm_sampling_strategy="rand", max_img_size=384, video_fmt='.mp4'): |
|
''' |
|
image_root (string): Root directory of video |
|
ann_root (string): directory to store the annotation file |
|
''' |
|
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/msrvtt_test.jsonl' |
|
filename = 'msrvtt_test.jsonl' |
|
|
|
download_url(url,ann_root) |
|
self.annotation = load_jsonl(os.path.join(ann_root,filename)) |
|
|
|
self.num_frm = num_frm |
|
self.frm_sampling_strategy = frm_sampling_strategy |
|
self.max_img_size = max_img_size |
|
self.video_root = video_root |
|
self.video_fmt = video_fmt |
|
self.img_norm = ImageNorm(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) |
|
|
|
self.text = [pre_caption(ann['caption'],40) for ann in self.annotation] |
|
self.txt2video = [i for i in range(len(self.annotation))] |
|
self.video2txt = self.txt2video |
|
|
|
|
|
def __len__(self): |
|
return len(self.annotation) |
|
|
|
def __getitem__(self, index): |
|
|
|
ann = self.annotation[index] |
|
|
|
video_path = os.path.join(self.video_root, ann['clip_name'] + self.video_fmt) |
|
|
|
vid_frm_array = self._load_video_from_path_decord(video_path, height=self.max_img_size, width=self.max_img_size) |
|
|
|
video = self.img_norm(vid_frm_array.float()) |
|
|
|
return video, ann['clip_name'] |
|
|
|
|
|
|
|
def _load_video_from_path_decord(self, video_path, height=None, width=None, start_time=None, end_time=None, fps=-1): |
|
try: |
|
if not height or not width: |
|
vr = VideoReader(video_path) |
|
else: |
|
vr = VideoReader(video_path, width=width, height=height) |
|
|
|
vlen = len(vr) |
|
|
|
if start_time or end_time: |
|
assert fps > 0, 'must provide video fps if specifying start and end time.' |
|
|
|
start_idx = min(int(start_time * fps), vlen) |
|
end_idx = min(int(end_time * fps), vlen) |
|
else: |
|
start_idx, end_idx = 0, vlen |
|
|
|
if self.frm_sampling_strategy == 'uniform': |
|
frame_indices = np.arange(start_idx, end_idx, vlen / self.num_frm, dtype=int) |
|
elif self.frm_sampling_strategy == 'rand': |
|
frame_indices = sorted(random.sample(range(vlen), self.num_frm)) |
|
elif self.frm_sampling_strategy == 'headtail': |
|
frame_indices_head = sorted(random.sample(range(vlen // 2), self.num_frm // 2)) |
|
frame_indices_tail = sorted(random.sample(range(vlen // 2, vlen), self.num_frm // 2)) |
|
frame_indices = frame_indices_head + frame_indices_tail |
|
else: |
|
raise NotImplementedError('Invalid sampling strategy {} '.format(self.frm_sampling_strategy)) |
|
|
|
raw_sample_frms = vr.get_batch(frame_indices) |
|
except Exception as e: |
|
return None |
|
|
|
raw_sample_frms = raw_sample_frms.permute(0, 3, 1, 2) |
|
|
|
return raw_sample_frms |
|
|