|
import os |
|
import json |
|
import random |
|
from PIL import Image |
|
|
|
import torch |
|
from torch.utils.data import Dataset |
|
from data.utils import pre_question |
|
|
|
from torchvision.datasets.utils import download_url |
|
|
|
class vqa_dataset(Dataset): |
|
def __init__(self, transform, ann_root, vqa_root, vg_root, train_files=[], split="train"): |
|
self.split = split |
|
|
|
self.transform = transform |
|
self.vqa_root = vqa_root |
|
self.vg_root = vg_root |
|
|
|
if split=='train': |
|
urls = {'vqa_train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_train.json', |
|
'vqa_val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_val.json', |
|
'vg_qa':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vg_qa.json'} |
|
|
|
self.annotation = [] |
|
for f in train_files: |
|
download_url(urls[f],ann_root) |
|
self.annotation += json.load(open(os.path.join(ann_root,'%s.json'%f),'r')) |
|
else: |
|
download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_test.json',ann_root) |
|
self.annotation = json.load(open(os.path.join(ann_root,'vqa_test.json'),'r')) |
|
|
|
download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/answer_list.json',ann_root) |
|
self.answer_list = json.load(open(os.path.join(ann_root,'answer_list.json'),'r')) |
|
|
|
|
|
def __len__(self): |
|
return len(self.annotation) |
|
|
|
def __getitem__(self, index): |
|
|
|
ann = self.annotation[index] |
|
|
|
if ann['dataset']=='vqa': |
|
image_path = os.path.join(self.vqa_root,ann['image']) |
|
elif ann['dataset']=='vg': |
|
image_path = os.path.join(self.vg_root,ann['image']) |
|
|
|
image = Image.open(image_path).convert('RGB') |
|
image = self.transform(image) |
|
|
|
if self.split == 'test': |
|
question = pre_question(ann['question']) |
|
question_id = ann['question_id'] |
|
return image, question, question_id |
|
|
|
|
|
elif self.split=='train': |
|
|
|
question = pre_question(ann['question']) |
|
|
|
if ann['dataset']=='vqa': |
|
answer_weight = {} |
|
for answer in ann['answer']: |
|
if answer in answer_weight.keys(): |
|
answer_weight[answer] += 1/len(ann['answer']) |
|
else: |
|
answer_weight[answer] = 1/len(ann['answer']) |
|
|
|
answers = list(answer_weight.keys()) |
|
weights = list(answer_weight.values()) |
|
|
|
elif ann['dataset']=='vg': |
|
answers = [ann['answer']] |
|
weights = [0.2] |
|
|
|
return image, question, answers, weights |
|
|
|
|
|
def vqa_collate_fn(batch): |
|
image_list, question_list, answer_list, weight_list, n = [], [], [], [], [] |
|
for image, question, answer, weights in batch: |
|
image_list.append(image) |
|
question_list.append(question) |
|
weight_list += weights |
|
answer_list += answer |
|
n.append(len(answer)) |
|
return torch.stack(image_list,dim=0), question_list, answer_list, torch.Tensor(weight_list), n |