|
from models.med import BertConfig, BertModel, BertLMHeadModel |
|
from models.blip import create_vit, init_tokenizer, load_checkpoint |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from transformers import BertTokenizer |
|
import numpy as np |
|
|
|
class BLIP_VQA(nn.Module): |
|
def __init__(self, |
|
med_config = 'configs/med_config.json', |
|
image_size = 480, |
|
vit = 'base', |
|
vit_grad_ckpt = False, |
|
vit_ckpt_layer = 0, |
|
): |
|
""" |
|
Args: |
|
med_config (str): path for the mixture of encoder-decoder model's configuration file |
|
image_size (int): input image size |
|
vit (str): model size of vision transformer |
|
""" |
|
super().__init__() |
|
|
|
self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1) |
|
self.tokenizer = init_tokenizer() |
|
|
|
encoder_config = BertConfig.from_json_file(med_config) |
|
encoder_config.encoder_width = vision_width |
|
self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False) |
|
|
|
decoder_config = BertConfig.from_json_file(med_config) |
|
self.text_decoder = BertLMHeadModel(config=decoder_config) |
|
|
|
|
|
def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128): |
|
|
|
image_embeds = self.visual_encoder(image) |
|
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) |
|
|
|
question = self.tokenizer(question, padding='longest', truncation=True, max_length=35, |
|
return_tensors="pt").to(image.device) |
|
question.input_ids[:,0] = self.tokenizer.enc_token_id |
|
|
|
if train: |
|
''' |
|
n: number of answers for each question |
|
weights: weight for each answer |
|
''' |
|
answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device) |
|
answer.input_ids[:,0] = self.tokenizer.bos_token_id |
|
answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100) |
|
|
|
question_output = self.text_encoder(question.input_ids, |
|
attention_mask = question.attention_mask, |
|
encoder_hidden_states = image_embeds, |
|
encoder_attention_mask = image_atts, |
|
return_dict = True) |
|
|
|
question_states = [] |
|
question_atts = [] |
|
for b, n in enumerate(n): |
|
question_states += [question_output.last_hidden_state[b]]*n |
|
question_atts += [question.attention_mask[b]]*n |
|
question_states = torch.stack(question_states,0) |
|
question_atts = torch.stack(question_atts,0) |
|
|
|
answer_output = self.text_decoder(answer.input_ids, |
|
attention_mask = answer.attention_mask, |
|
encoder_hidden_states = question_states, |
|
encoder_attention_mask = question_atts, |
|
labels = answer_targets, |
|
return_dict = True, |
|
reduction = 'none', |
|
) |
|
|
|
loss = weights * answer_output.loss |
|
loss = loss.sum()/image.size(0) |
|
|
|
return loss |
|
|
|
|
|
else: |
|
question_output = self.text_encoder(question.input_ids, |
|
attention_mask = question.attention_mask, |
|
encoder_hidden_states = image_embeds, |
|
encoder_attention_mask = image_atts, |
|
return_dict = True) |
|
|
|
if inference=='generate': |
|
num_beams = 3 |
|
question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0) |
|
question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device) |
|
model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts} |
|
|
|
bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device) |
|
|
|
outputs = self.text_decoder.generate(input_ids=bos_ids, |
|
max_length=10, |
|
min_length=1, |
|
num_beams=num_beams, |
|
eos_token_id=self.tokenizer.sep_token_id, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
**model_kwargs) |
|
|
|
answers = [] |
|
for output in outputs: |
|
answer = self.tokenizer.decode(output, skip_special_tokens=True) |
|
answers.append(answer) |
|
return answers |
|
|
|
elif inference=='rank': |
|
max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask, |
|
answer.input_ids, answer.attention_mask, k_test) |
|
return max_ids |
|
|
|
|
|
|
|
def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k): |
|
|
|
num_ques = question_states.size(0) |
|
start_ids = answer_ids[0,0].repeat(num_ques,1) |
|
|
|
start_output = self.text_decoder(start_ids, |
|
encoder_hidden_states = question_states, |
|
encoder_attention_mask = question_atts, |
|
return_dict = True, |
|
reduction = 'none') |
|
logits = start_output.logits[:,0,:] |
|
|
|
|
|
|
|
answer_first_token = answer_ids[:,1] |
|
prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token) |
|
topk_probs, topk_ids = prob_first_token.topk(k,dim=1) |
|
|
|
|
|
input_ids = [] |
|
input_atts = [] |
|
for b, topk_id in enumerate(topk_ids): |
|
input_ids.append(answer_ids.index_select(dim=0, index=topk_id)) |
|
input_atts.append(answer_atts.index_select(dim=0, index=topk_id)) |
|
input_ids = torch.cat(input_ids,dim=0) |
|
input_atts = torch.cat(input_atts,dim=0) |
|
|
|
targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100) |
|
|
|
|
|
question_states = tile(question_states, 0, k) |
|
question_atts = tile(question_atts, 0, k) |
|
|
|
output = self.text_decoder(input_ids, |
|
attention_mask = input_atts, |
|
encoder_hidden_states = question_states, |
|
encoder_attention_mask = question_atts, |
|
labels = targets_ids, |
|
return_dict = True, |
|
reduction = 'none') |
|
|
|
log_probs_sum = -output.loss |
|
log_probs_sum = log_probs_sum.view(num_ques,k) |
|
|
|
max_topk_ids = log_probs_sum.argmax(dim=1) |
|
max_ids = topk_ids[max_topk_ids>=0,max_topk_ids] |
|
|
|
return max_ids |
|
|
|
|
|
def blip_vqa(pretrained='',**kwargs): |
|
model = BLIP_VQA(**kwargs) |
|
if pretrained: |
|
model,msg = load_checkpoint(model,pretrained) |
|
|
|
return model |
|
|
|
|
|
def tile(x, dim, n_tile): |
|
init_dim = x.size(dim) |
|
repeat_idx = [1] * x.dim() |
|
repeat_idx[dim] = n_tile |
|
x = x.repeat(*(repeat_idx)) |
|
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])) |
|
return torch.index_select(x, dim, order_index.to(x.device)) |
|
|
|
|