# import gradio as gr # def greet(image): # return "Shape " + image.shape + "!!" # iface = gr.Interface(fn=greet, inputs="image", outputs="text") # iface.launch() import gradio as gr import sys from BLIP.models.blip import blip_decoder from PIL import Image import requests import torch from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from urllib.parse import urlparse device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') image_size = 384 transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) model_url = "https://technionmail-my.sharepoint.com/personal/snoamr_campus_technion_ac_il/_layouts/15/download.aspx?share=EZxgXQaBXGREgDsQiaTcwAAB0z8jQA_hgAnwwPQDt8Dgew" model = blip_decoder(pretrained=model_url, image_size=384, vit='base') model.eval() model = model.to(device) def inference(raw_image): image = transform(raw_image).unsqueeze(0).to(device) with torch.no_grad(): caption = model.generate(image, sample=False, num_beams=1, max_length=60, min_length=5) return caption[0] inputs = [gr.Image(type='pil', interactive=False),] outputs = gr.outputs.Textbox(label="Caption") title = "FuseCap" description = "Gradio demo for FuseCap: Leveraging Large Language Models to Fuse Visual Data into Enriched Image Captions. This demo features a BLIP-based model, trained using FuseCap." article = "place holder" gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['birthday_dog.jpeg']]).launch(enable_queue=True)