from aim import Run from aim.pytorch import track_gradients_dists, track_params_dists import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from tqdm import tqdm # Hyperparameters batch_size = 64 epochs = 10 learning_rate = 0.01 aim_run = Run() class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(64 * 7 * 7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = torch.flatten(x, 1) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) model = CNN() optimizer = optim.Adam(model.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # Training loop for epoch in range(epochs): model.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (data, target) in enumerate(tqdm(train_loader, desc="Training", leave=False)): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() # Track training metrics and distributions acc = correct / total items = {'accuracy': acc, 'loss': train_loss / len(train_loader)} aim_run.track(items, epoch=epoch, context={'subset': 'train'}) track_params_dists(model, aim_run, epoch=epoch, context={'subset': 'train'}) track_gradients_dists(model, aim_run, epoch=epoch, context={'subset': 'train'}) #################### model.eval() test_loss = 0 correct = 0 total = 0 #################### with torch.no_grad(): for batch_idx, (data, target) in enumerate(tqdm(test_loader, desc="Testing", leave=False)): output = model(data) loss = criterion(output, target) test_loss += loss.item() _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() ## acc = correct / total items = {'accuracy': acc, 'loss': test_loss / len(test_loader)} aim_run.track(items, epoch=epoch, context={'subset': 'test'}) track_params_dists(model, aim_run, epoch=epoch, context={'subset': 'test'}) track_gradients_dists(model, aim_run, epoch=epoch, context={'subset': 'test'}) # ### torch.save(model.state_dict(), 'mnist_cnn.pth')