Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,18 @@ import os
|
|
2 |
import time
|
3 |
#import spaces
|
4 |
import torch
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
-
MODEL_LIST = ["
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
10 |
-
MODEL_ID = os.environ.get("MODEL_ID", None)
|
11 |
-
MODEL_NAME = MODEL_ID.split("/")[-1]
|
12 |
|
13 |
-
TITLE = "<h1><center>
|
14 |
|
15 |
-
DESCRIPTION = f"""
|
16 |
-
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
|
17 |
-
"""
|
18 |
PLACEHOLDER = """
|
19 |
<center>
|
20 |
-
<
|
21 |
</center>
|
22 |
"""
|
23 |
|
@@ -34,13 +30,22 @@ h3 {
|
|
34 |
}
|
35 |
"""
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
#@spaces.GPU()
|
46 |
def stream_chat(
|
@@ -50,7 +55,8 @@ def stream_chat(
|
|
50 |
max_new_tokens: int = 1024,
|
51 |
top_p: float = 1.0,
|
52 |
top_k: int = 20,
|
53 |
-
penalty: float = 1.2
|
|
|
54 |
):
|
55 |
print(f'message: {message}')
|
56 |
print(f'history: {history}')
|
@@ -61,26 +67,49 @@ def stream_chat(
|
|
61 |
{"role": "user", "content": prompt},
|
62 |
{"role": "assistant", "content": answer},
|
63 |
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
query = message,
|
69 |
-
history = conversation,
|
70 |
-
max_length = max_new_tokens,
|
71 |
do_sample = False if temperature == 0 else True,
|
72 |
top_p = top_p,
|
73 |
top_k = top_k,
|
74 |
temperature = temperature,
|
|
|
75 |
)
|
76 |
-
return resp
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
80 |
|
81 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
82 |
gr.HTML(TITLE)
|
83 |
-
gr.HTML(DESCRIPTION)
|
84 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
85 |
gr.ChatInterface(
|
86 |
fn=stream_chat,
|
@@ -128,6 +157,12 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
128 |
label="Repetition penalty",
|
129 |
render=False,
|
130 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
],
|
132 |
examples=[
|
133 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|
|
|
2 |
import time
|
3 |
#import spaces
|
4 |
import torch
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
import gradio as gr
|
7 |
+
from threading import Thread
|
8 |
|
9 |
+
MODEL_LIST = ["HuggingFaceTB/SmolLM-1.7B-Instruct", "HuggingFaceTB/SmolLM-135M-Instruct", "HuggingFaceTB/SmolLM-360M-Instruct"]
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
|
|
11 |
|
12 |
+
TITLE = "<h1><center>SmolLM-Instruct</center></h1>"
|
13 |
|
|
|
|
|
|
|
14 |
PLACEHOLDER = """
|
15 |
<center>
|
16 |
+
<pSmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters.</p>
|
17 |
</center>
|
18 |
"""
|
19 |
|
|
|
30 |
}
|
31 |
"""
|
32 |
|
33 |
+
# pip install transformers
|
34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
35 |
+
|
36 |
+
device = "cpu" # for GPU usage or "cpu" for CPU usage
|
37 |
+
|
38 |
+
tokenizer0 = AutoTokenizer.from_pretrained(MODEL_LIST[0])
|
39 |
+
model0 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[0]).to(device)
|
40 |
+
|
41 |
+
tokenizer1 = AutoTokenizer.from_pretrained(MODEL_LIST[1])
|
42 |
+
model1 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[1]).to(device)
|
43 |
+
|
44 |
+
tokenizer2 = AutoTokenizer.from_pretrained(MODEL_LIST[2])
|
45 |
+
model2 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[2]).to(device)
|
46 |
+
|
47 |
+
messages = [{"role": "user", "content": "List the steps to bake a chocolate cake from scratch."}]
|
48 |
+
|
49 |
|
50 |
#@spaces.GPU()
|
51 |
def stream_chat(
|
|
|
55 |
max_new_tokens: int = 1024,
|
56 |
top_p: float = 1.0,
|
57 |
top_k: int = 20,
|
58 |
+
penalty: float = 1.2,
|
59 |
+
choice: str = "1.7B"
|
60 |
):
|
61 |
print(f'message: {message}')
|
62 |
print(f'history: {history}')
|
|
|
67 |
{"role": "user", "content": prompt},
|
68 |
{"role": "assistant", "content": answer},
|
69 |
])
|
70 |
+
|
71 |
+
conversation.append({"role": "user", "content": message})
|
72 |
+
|
73 |
+
if choice == "1.7B":
|
74 |
+
tokenizer = tokenizer0
|
75 |
+
model = model0
|
76 |
+
elif choice == "135M":
|
77 |
+
model = model1
|
78 |
+
tokenizer = tokenizer1
|
79 |
+
else:
|
80 |
+
model = model2
|
81 |
+
tokenizer = tokenizer2
|
82 |
+
|
83 |
+
input_text=tokenizer.apply_chat_template(conversation, tokenize=False)
|
84 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
85 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
86 |
|
87 |
+
generate_kwargs = dict(
|
88 |
+
inputs,
|
89 |
+
max_new_tokens = max_new_tokens,
|
|
|
|
|
|
|
90 |
do_sample = False if temperature == 0 else True,
|
91 |
top_p = top_p,
|
92 |
top_k = top_k,
|
93 |
temperature = temperature,
|
94 |
+
streamer=streamer,
|
95 |
)
|
|
|
96 |
|
97 |
+
with torch.no_grad():
|
98 |
+
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
99 |
+
thread.start()
|
100 |
+
|
101 |
+
buffer = ""
|
102 |
+
for new_text in streamer:
|
103 |
+
buffer += new_text
|
104 |
+
yield buffer
|
105 |
+
|
106 |
+
|
107 |
+
#print(tokenizer.decode(outputs[0]))
|
108 |
|
109 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
110 |
|
111 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
112 |
gr.HTML(TITLE)
|
|
|
113 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
114 |
gr.ChatInterface(
|
115 |
fn=stream_chat,
|
|
|
157 |
label="Repetition penalty",
|
158 |
render=False,
|
159 |
),
|
160 |
+
gr.Radio(
|
161 |
+
["135M", "360M", "1.7B"],
|
162 |
+
value="1.7B",
|
163 |
+
label="Load Model",
|
164 |
+
render=False,
|
165 |
+
),
|
166 |
],
|
167 |
examples=[
|
168 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|