|
import os, types, traceback |
|
import json |
|
from enum import Enum |
|
import requests |
|
import time, httpx |
|
from typing import Callable, Optional |
|
from litellm.utils import ModelResponse, Choices, Message |
|
import litellm |
|
|
|
class AI21Error(Exception): |
|
def __init__(self, status_code, message): |
|
self.status_code = status_code |
|
self.message = message |
|
self.request = httpx.Request(method="POST", url="https://api.ai21.com/studio/v1/") |
|
self.response = httpx.Response(status_code=status_code, request=self.request) |
|
super().__init__( |
|
self.message |
|
) |
|
|
|
class AI21Config(): |
|
""" |
|
Reference: https://docs.ai21.com/reference/j2-complete-ref |
|
|
|
The class `AI21Config` provides configuration for the AI21's API interface. Below are the parameters: |
|
|
|
- `numResults` (int32): Number of completions to sample and return. Optional, default is 1. If the temperature is greater than 0 (non-greedy decoding), a value greater than 1 can be meaningful. |
|
|
|
- `maxTokens` (int32): The maximum number of tokens to generate per result. Optional, default is 16. If no `stopSequences` are given, generation stops after producing `maxTokens`. |
|
|
|
- `minTokens` (int32): The minimum number of tokens to generate per result. Optional, default is 0. If `stopSequences` are given, they are ignored until `minTokens` are generated. |
|
|
|
- `temperature` (float): Modifies the distribution from which tokens are sampled. Optional, default is 0.7. A value of 0 essentially disables sampling and results in greedy decoding. |
|
|
|
- `topP` (float): Used for sampling tokens from the corresponding top percentile of probability mass. Optional, default is 1. For instance, a value of 0.9 considers only tokens comprising the top 90% probability mass. |
|
|
|
- `stopSequences` (array of strings): Stops decoding if any of the input strings is generated. Optional. |
|
|
|
- `topKReturn` (int32): Range between 0 to 10, including both. Optional, default is 0. Specifies the top-K alternative tokens to return. A non-zero value includes the string representations and log-probabilities for each of the top-K alternatives at each position. |
|
|
|
- `frequencyPenalty` (object): Placeholder for frequency penalty object. |
|
|
|
- `presencePenalty` (object): Placeholder for presence penalty object. |
|
|
|
- `countPenalty` (object): Placeholder for count penalty object. |
|
""" |
|
numResults: Optional[int]=None |
|
maxTokens: Optional[int]=None |
|
minTokens: Optional[int]=None |
|
temperature: Optional[float]=None |
|
topP: Optional[float]=None |
|
stopSequences: Optional[list]=None |
|
topKReturn: Optional[int]=None |
|
frequencePenalty: Optional[dict]=None |
|
presencePenalty: Optional[dict]=None |
|
countPenalty: Optional[dict]=None |
|
|
|
def __init__(self, |
|
numResults: Optional[int]=None, |
|
maxTokens: Optional[int]=None, |
|
minTokens: Optional[int]=None, |
|
temperature: Optional[float]=None, |
|
topP: Optional[float]=None, |
|
stopSequences: Optional[list]=None, |
|
topKReturn: Optional[int]=None, |
|
frequencePenalty: Optional[dict]=None, |
|
presencePenalty: Optional[dict]=None, |
|
countPenalty: Optional[dict]=None) -> None: |
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != 'self' and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return {k: v for k, v in cls.__dict__.items() |
|
if not k.startswith('__') |
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) |
|
and v is not None} |
|
|
|
|
|
|
|
def validate_environment(api_key): |
|
if api_key is None: |
|
raise ValueError( |
|
"Missing AI21 API Key - A call is being made to ai21 but no key is set either in the environment variables or via params" |
|
) |
|
headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
"Authorization": "Bearer " + api_key, |
|
} |
|
return headers |
|
|
|
def completion( |
|
model: str, |
|
messages: list, |
|
api_base: str, |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
optional_params=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
): |
|
headers = validate_environment(api_key) |
|
model = model |
|
prompt = "" |
|
for message in messages: |
|
if "role" in message: |
|
if message["role"] == "user": |
|
prompt += ( |
|
f"{message['content']}" |
|
) |
|
else: |
|
prompt += ( |
|
f"{message['content']}" |
|
) |
|
else: |
|
prompt += f"{message['content']}" |
|
|
|
|
|
config = litellm.AI21Config.get_config() |
|
for k, v in config.items(): |
|
if k not in optional_params: |
|
optional_params[k] = v |
|
|
|
data = { |
|
"prompt": prompt, |
|
|
|
**optional_params, |
|
} |
|
|
|
|
|
logging_obj.pre_call( |
|
input=prompt, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
response = requests.post( |
|
api_base + model + "/complete", headers=headers, data=json.dumps(data) |
|
) |
|
if response.status_code != 200: |
|
raise AI21Error( |
|
status_code=response.status_code, |
|
message=response.text |
|
) |
|
if "stream" in optional_params and optional_params["stream"] == True: |
|
return response.iter_lines() |
|
else: |
|
|
|
logging_obj.post_call( |
|
input=prompt, |
|
api_key=api_key, |
|
original_response=response.text, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
completion_response = response.json() |
|
try: |
|
choices_list = [] |
|
for idx, item in enumerate(completion_response["completions"]): |
|
if len(item["data"]["text"]) > 0: |
|
message_obj = Message(content=item["data"]["text"]) |
|
else: |
|
message_obj = Message(content=None) |
|
choice_obj = Choices(finish_reason=item["finishReason"]["reason"], index=idx+1, message=message_obj) |
|
choices_list.append(choice_obj) |
|
model_response["choices"] = choices_list |
|
except Exception as e: |
|
raise AI21Error(message=traceback.format_exc(), status_code=response.status_code) |
|
|
|
|
|
prompt_tokens = len( |
|
encoding.encode(prompt) |
|
) |
|
completion_tokens = len( |
|
encoding.encode(model_response["choices"][0]["message"].get("content")) |
|
) |
|
|
|
model_response["created"] = int(time.time()) |
|
model_response["model"] = model |
|
model_response["usage"] = { |
|
"prompt_tokens": prompt_tokens, |
|
"completion_tokens": completion_tokens, |
|
"total_tokens": prompt_tokens + completion_tokens, |
|
} |
|
return model_response |
|
|
|
def embedding(): |
|
|
|
pass |
|
|