|
|
|
import os, copy, types |
|
import json |
|
from enum import Enum |
|
import httpx, requests |
|
from .base import BaseLLM |
|
import time |
|
import litellm |
|
from typing import Callable, Dict, List, Any |
|
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, Usage |
|
from typing import Optional |
|
from .prompt_templates.factory import prompt_factory, custom_prompt |
|
|
|
class HuggingfaceError(Exception): |
|
def __init__(self, status_code, message, request: Optional[httpx.Request]=None, response: Optional[httpx.Response]=None): |
|
self.status_code = status_code |
|
self.message = message |
|
if request is not None: |
|
self.request = request |
|
else: |
|
self.request = httpx.Request(method="POST", url="https://api-inference.huggingface.co/models") |
|
if response is not None: |
|
self.response = response |
|
else: |
|
self.response = httpx.Response(status_code=status_code, request=self.request) |
|
super().__init__( |
|
self.message |
|
) |
|
|
|
class HuggingfaceConfig(): |
|
""" |
|
Reference: https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/compat_generate |
|
""" |
|
best_of: Optional[int] = None |
|
decoder_input_details: Optional[bool] = None |
|
details: Optional[bool] = True |
|
max_new_tokens: Optional[int] = None |
|
repetition_penalty: Optional[float] = None |
|
return_full_text: Optional[bool] = False |
|
seed: Optional[int] = None |
|
temperature: Optional[float] = None |
|
top_k: Optional[int] = None |
|
top_n_tokens: Optional[int] = None |
|
top_p: Optional[int] = None |
|
truncate: Optional[int] = None |
|
typical_p: Optional[float] = None |
|
watermark: Optional[bool] = None |
|
|
|
def __init__(self, |
|
best_of: Optional[int] = None, |
|
decoder_input_details: Optional[bool] = None, |
|
details: Optional[bool] = None, |
|
max_new_tokens: Optional[int] = None, |
|
repetition_penalty: Optional[float] = None, |
|
return_full_text: Optional[bool] = None, |
|
seed: Optional[int] = None, |
|
temperature: Optional[float] = None, |
|
top_k: Optional[int] = None, |
|
top_n_tokens: Optional[int] = None, |
|
top_p: Optional[int] = None, |
|
truncate: Optional[int] = None, |
|
typical_p: Optional[float] = None, |
|
watermark: Optional[bool] = None |
|
) -> None: |
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != 'self' and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return {k: v for k, v in cls.__dict__.items() |
|
if not k.startswith('__') |
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) |
|
and v is not None} |
|
|
|
def output_parser(generated_text: str): |
|
""" |
|
Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens. |
|
|
|
Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763 |
|
""" |
|
chat_template_tokens = ["<|assistant|>", "<|system|>", "<|user|>", "<s>", "</s>"] |
|
for token in chat_template_tokens: |
|
if generated_text.strip().startswith(token): |
|
generated_text = generated_text.replace(token, "", 1) |
|
if generated_text.endswith(token): |
|
generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1] |
|
return generated_text |
|
|
|
tgi_models_cache = None |
|
conv_models_cache = None |
|
def read_tgi_conv_models(): |
|
try: |
|
global tgi_models_cache, conv_models_cache |
|
|
|
|
|
if (tgi_models_cache is not None) and (conv_models_cache is not None): |
|
return tgi_models_cache, conv_models_cache |
|
|
|
tgi_models = set() |
|
script_directory = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
file_path = os.path.join(script_directory, "huggingface_llms_metadata", "hf_text_generation_models.txt") |
|
|
|
with open(file_path, 'r') as file: |
|
for line in file: |
|
tgi_models.add(line.strip()) |
|
|
|
|
|
tgi_models_cache = tgi_models |
|
|
|
|
|
file_path = os.path.join(script_directory, "huggingface_llms_metadata", "hf_conversational_models.txt") |
|
conv_models = set() |
|
with open(file_path, 'r') as file: |
|
for line in file: |
|
conv_models.add(line.strip()) |
|
|
|
conv_models_cache = conv_models |
|
return tgi_models, conv_models |
|
except: |
|
return set(), set() |
|
|
|
|
|
def get_hf_task_for_model(model): |
|
|
|
|
|
tgi_models, conversational_models = read_tgi_conv_models() |
|
if model in tgi_models: |
|
return "text-generation-inference" |
|
elif model in conversational_models: |
|
return "conversational" |
|
elif "roneneldan/TinyStories" in model: |
|
return None |
|
else: |
|
return "text-generation-inference" |
|
|
|
class Huggingface(BaseLLM): |
|
_client_session: Optional[httpx.Client] = None |
|
_aclient_session: Optional[httpx.AsyncClient] = None |
|
|
|
def __init__(self) -> None: |
|
super().__init__() |
|
|
|
def validate_environment(self, api_key, headers): |
|
default_headers = { |
|
"content-type": "application/json", |
|
} |
|
if api_key and headers is None: |
|
default_headers["Authorization"] = f"Bearer {api_key}" |
|
headers = default_headers |
|
elif headers: |
|
headers=headers |
|
else: |
|
headers = default_headers |
|
return headers |
|
|
|
def convert_to_model_response_object(self, |
|
completion_response, |
|
model_response, |
|
task, |
|
optional_params, |
|
encoding, |
|
input_text, |
|
model): |
|
if task == "conversational": |
|
if len(completion_response["generated_text"]) > 0: |
|
model_response["choices"][0]["message"][ |
|
"content" |
|
] = completion_response["generated_text"] |
|
elif task == "text-generation-inference": |
|
if len(completion_response[0]["generated_text"]) > 0: |
|
model_response["choices"][0]["message"][ |
|
"content" |
|
] = output_parser(completion_response[0]["generated_text"]) |
|
|
|
if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]: |
|
model_response.choices[0].finish_reason = completion_response[0]["details"]["finish_reason"] |
|
sum_logprob = 0 |
|
for token in completion_response[0]["details"]["tokens"]: |
|
if token["logprob"] != None: |
|
sum_logprob += token["logprob"] |
|
model_response["choices"][0]["message"]._logprob = sum_logprob |
|
if "best_of" in optional_params and optional_params["best_of"] > 1: |
|
if "details" in completion_response[0] and "best_of_sequences" in completion_response[0]["details"]: |
|
choices_list = [] |
|
for idx, item in enumerate(completion_response[0]["details"]["best_of_sequences"]): |
|
sum_logprob = 0 |
|
for token in item["tokens"]: |
|
if token["logprob"] != None: |
|
sum_logprob += token["logprob"] |
|
if len(item["generated_text"]) > 0: |
|
message_obj = Message(content=output_parser(item["generated_text"]), logprobs=sum_logprob) |
|
else: |
|
message_obj = Message(content=None) |
|
choice_obj = Choices(finish_reason=item["finish_reason"], index=idx+1, message=message_obj) |
|
choices_list.append(choice_obj) |
|
model_response["choices"].extend(choices_list) |
|
else: |
|
if len(completion_response[0]["generated_text"]) > 0: |
|
model_response["choices"][0]["message"][ |
|
"content" |
|
] = output_parser(completion_response[0]["generated_text"]) |
|
|
|
prompt_tokens = 0 |
|
try: |
|
prompt_tokens = len( |
|
encoding.encode(input_text) |
|
) |
|
except: |
|
|
|
pass |
|
output_text = model_response["choices"][0]["message"].get("content", "") |
|
if output_text is not None and len(output_text) > 0: |
|
completion_tokens = 0 |
|
try: |
|
completion_tokens = len( |
|
encoding.encode(model_response["choices"][0]["message"].get("content", "")) |
|
) |
|
except: |
|
|
|
pass |
|
else: |
|
completion_tokens = 0 |
|
|
|
model_response["created"] = int(time.time()) |
|
model_response["model"] = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens |
|
) |
|
model_response.usage = usage |
|
model_response._hidden_params["original_response"] = completion_response |
|
return model_response |
|
|
|
def completion(self, |
|
model: str, |
|
messages: list, |
|
api_base: Optional[str], |
|
headers: Optional[dict], |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
custom_prompt_dict={}, |
|
acompletion: bool = False, |
|
optional_params=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
): |
|
super().completion() |
|
exception_mapping_worked = False |
|
try: |
|
headers = self.validate_environment(api_key, headers) |
|
task = get_hf_task_for_model(model) |
|
print_verbose(f"{model}, {task}") |
|
completion_url = "" |
|
input_text = "" |
|
if "https" in model: |
|
completion_url = model |
|
elif api_base: |
|
completion_url = api_base |
|
elif "HF_API_BASE" in os.environ: |
|
completion_url = os.getenv("HF_API_BASE", "") |
|
elif "HUGGINGFACE_API_BASE" in os.environ: |
|
completion_url = os.getenv("HUGGINGFACE_API_BASE", "") |
|
else: |
|
completion_url = f"https://api-inference.huggingface.co/models/{model}" |
|
|
|
|
|
config=litellm.HuggingfaceConfig.get_config() |
|
for k, v in config.items(): |
|
if k not in optional_params: |
|
optional_params[k] = v |
|
|
|
|
|
if task == "conversational": |
|
inference_params = copy.deepcopy(optional_params) |
|
inference_params.pop("details") |
|
inference_params.pop("return_full_text") |
|
past_user_inputs = [] |
|
generated_responses = [] |
|
text = "" |
|
for message in messages: |
|
if message["role"] == "user": |
|
if text != "": |
|
past_user_inputs.append(text) |
|
text = message["content"] |
|
elif message["role"] == "assistant" or message["role"] == "system": |
|
generated_responses.append(message["content"]) |
|
data = { |
|
"inputs": { |
|
"text": text, |
|
"past_user_inputs": past_user_inputs, |
|
"generated_responses": generated_responses |
|
}, |
|
"parameters": inference_params |
|
} |
|
input_text = "".join(message["content"] for message in messages) |
|
elif task == "text-generation-inference": |
|
|
|
if model in custom_prompt_dict: |
|
|
|
model_prompt_details = custom_prompt_dict[model] |
|
prompt = custom_prompt( |
|
role_dict=model_prompt_details.get("roles", None), |
|
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""), |
|
final_prompt_value=model_prompt_details.get("final_prompt_value", ""), |
|
messages=messages |
|
) |
|
else: |
|
prompt = prompt_factory(model=model, messages=messages) |
|
data = { |
|
"inputs": prompt, |
|
"parameters": optional_params, |
|
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False, |
|
} |
|
input_text = prompt |
|
else: |
|
|
|
|
|
if model in custom_prompt_dict: |
|
|
|
model_prompt_details = custom_prompt_dict[model] |
|
prompt = custom_prompt( |
|
role_dict=model_prompt_details.get("roles", {}), |
|
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""), |
|
final_prompt_value=model_prompt_details.get("final_prompt_value", ""), |
|
bos_token=model_prompt_details.get("bos_token", ""), |
|
eos_token=model_prompt_details.get("eos_token", ""), |
|
messages=messages, |
|
) |
|
else: |
|
prompt = prompt_factory(model=model, messages=messages) |
|
inference_params = copy.deepcopy(optional_params) |
|
inference_params.pop("details") |
|
inference_params.pop("return_full_text") |
|
data = { |
|
"inputs": prompt, |
|
"parameters": inference_params, |
|
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False, |
|
} |
|
input_text = prompt |
|
|
|
logging_obj.pre_call( |
|
input=input_text, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data, "task": task, "headers": headers, "api_base": completion_url, "acompletion": acompletion}, |
|
) |
|
|
|
if acompletion is True: |
|
|
|
if optional_params.get("stream", False): |
|
return self.async_streaming(logging_obj=logging_obj, api_base=completion_url, data=data, headers=headers, model_response=model_response, model=model) |
|
else: |
|
|
|
return self.acompletion(api_base=completion_url, data=data, headers=headers, model_response=model_response, task=task, encoding=encoding, input_text=input_text, model=model, optional_params=optional_params) |
|
|
|
if "stream" in optional_params and optional_params["stream"] == True: |
|
response = requests.post( |
|
completion_url, |
|
headers=headers, |
|
data=json.dumps(data), |
|
stream=optional_params["stream"] |
|
) |
|
return response.iter_lines() |
|
|
|
else: |
|
response = requests.post( |
|
completion_url, |
|
headers=headers, |
|
data=json.dumps(data) |
|
) |
|
|
|
|
|
is_streamed = False |
|
if response.__dict__['headers'].get("Content-Type", "") == "text/event-stream": |
|
is_streamed = True |
|
|
|
|
|
if is_streamed: |
|
streamed_response = CustomStreamWrapper(completion_stream=response.iter_lines(), model=model, custom_llm_provider="huggingface", logging_obj=logging_obj) |
|
content = "" |
|
for chunk in streamed_response: |
|
content += chunk["choices"][0]["delta"]["content"] |
|
completion_response: List[Dict[str, Any]] = [{"generated_text": content}] |
|
|
|
logging_obj.post_call( |
|
input=input_text, |
|
api_key=api_key, |
|
original_response=completion_response, |
|
additional_args={"complete_input_dict": data, "task": task}, |
|
) |
|
else: |
|
|
|
logging_obj.post_call( |
|
input=input_text, |
|
api_key=api_key, |
|
original_response=response.text, |
|
additional_args={"complete_input_dict": data, "task": task}, |
|
) |
|
|
|
try: |
|
completion_response = response.json() |
|
if isinstance(completion_response, dict): |
|
completion_response = [completion_response] |
|
except: |
|
import traceback |
|
raise HuggingfaceError( |
|
message=f"Original Response received: {response.text}; Stacktrace: {traceback.format_exc()}", status_code=response.status_code |
|
) |
|
print_verbose(f"response: {completion_response}") |
|
if isinstance(completion_response, dict) and "error" in completion_response: |
|
print_verbose(f"completion error: {completion_response['error']}") |
|
print_verbose(f"response.status_code: {response.status_code}") |
|
raise HuggingfaceError( |
|
message=completion_response["error"], |
|
status_code=response.status_code, |
|
) |
|
return self.convert_to_model_response_object( |
|
completion_response=completion_response, |
|
model_response=model_response, |
|
task=task, |
|
optional_params=optional_params, |
|
encoding=encoding, |
|
input_text=input_text, |
|
model=model |
|
) |
|
except HuggingfaceError as e: |
|
exception_mapping_worked = True |
|
raise e |
|
except Exception as e: |
|
if exception_mapping_worked: |
|
raise e |
|
else: |
|
import traceback |
|
raise HuggingfaceError(status_code=500, message=traceback.format_exc()) |
|
|
|
async def acompletion(self, |
|
api_base: str, |
|
data: dict, |
|
headers: dict, |
|
model_response: ModelResponse, |
|
task: str, |
|
encoding: Any, |
|
input_text: str, |
|
model: str, |
|
optional_params: dict): |
|
response = None |
|
try: |
|
async with httpx.AsyncClient() as client: |
|
response = await client.post(url=api_base, json=data, headers=headers, timeout=None) |
|
response_json = response.json() |
|
if response.status_code != 200: |
|
raise HuggingfaceError(status_code=response.status_code, message=response.text, request=response.request, response=response) |
|
|
|
|
|
return self.convert_to_model_response_object(completion_response=response_json, |
|
model_response=model_response, |
|
task=task, |
|
encoding=encoding, |
|
input_text=input_text, |
|
model=model, |
|
optional_params=optional_params) |
|
except Exception as e: |
|
if isinstance(e,httpx.TimeoutException): |
|
raise HuggingfaceError(status_code=500, message="Request Timeout Error") |
|
elif response is not None and hasattr(response, "text"): |
|
raise HuggingfaceError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}") |
|
else: |
|
raise HuggingfaceError(status_code=500, message=f"{str(e)}") |
|
|
|
async def async_streaming(self, |
|
logging_obj, |
|
api_base: str, |
|
data: dict, |
|
headers: dict, |
|
model_response: ModelResponse, |
|
model: str): |
|
async with httpx.AsyncClient() as client: |
|
response = client.stream( |
|
"POST", |
|
url=f"{api_base}", |
|
json=data, |
|
headers=headers |
|
) |
|
async with response as r: |
|
if r.status_code != 200: |
|
raise HuggingfaceError(status_code=r.status_code, message="An error occurred while streaming") |
|
|
|
streamwrapper = CustomStreamWrapper(completion_stream=r.aiter_lines(), model=model, custom_llm_provider="huggingface",logging_obj=logging_obj) |
|
async for transformed_chunk in streamwrapper: |
|
yield transformed_chunk |
|
|
|
def embedding(self, |
|
model: str, |
|
input: list, |
|
api_key: Optional[str] = None, |
|
api_base: Optional[str] = None, |
|
logging_obj=None, |
|
model_response=None, |
|
encoding=None, |
|
): |
|
super().embedding() |
|
headers = self.validate_environment(api_key, headers=None) |
|
|
|
embed_url = "" |
|
if "https" in model: |
|
embed_url = model |
|
elif api_base: |
|
embed_url = api_base |
|
elif "HF_API_BASE" in os.environ: |
|
embed_url = os.getenv("HF_API_BASE", "") |
|
elif "HUGGINGFACE_API_BASE" in os.environ: |
|
embed_url = os.getenv("HUGGINGFACE_API_BASE", "") |
|
else: |
|
embed_url = f"https://api-inference.huggingface.co/models/{model}" |
|
|
|
if "sentence-transformers" in model: |
|
if len(input) == 0: |
|
raise HuggingfaceError(status_code=400, message="sentence transformers requires 2+ sentences") |
|
data = { |
|
"inputs": { |
|
"source_sentence": input[0], |
|
"sentences": [ "That is a happy dog", "That is a very happy person", "Today is a sunny day" ] |
|
} |
|
} |
|
else: |
|
data = { |
|
"inputs": input |
|
} |
|
|
|
|
|
logging_obj.pre_call( |
|
input=input, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
response = requests.post( |
|
embed_url, headers=headers, data=json.dumps(data) |
|
) |
|
|
|
|
|
|
|
logging_obj.post_call( |
|
input=input, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data}, |
|
original_response=response, |
|
) |
|
|
|
|
|
embeddings = response.json() |
|
|
|
if "error" in embeddings: |
|
raise HuggingfaceError(status_code=500, message=embeddings['error']) |
|
|
|
output_data = [] |
|
if "similarities" in embeddings: |
|
for idx, embedding in embeddings["similarities"]: |
|
output_data.append( |
|
{ |
|
"object": "embedding", |
|
"index": idx, |
|
"embedding": embedding |
|
} |
|
) |
|
else: |
|
for idx, embedding in enumerate(embeddings): |
|
if isinstance(embedding, float): |
|
output_data.append( |
|
{ |
|
"object": "embedding", |
|
"index": idx, |
|
"embedding": embedding |
|
} |
|
) |
|
else: |
|
output_data.append( |
|
{ |
|
"object": "embedding", |
|
"index": idx, |
|
"embedding": embedding[0][0] |
|
} |
|
) |
|
model_response["object"] = "list" |
|
model_response["data"] = output_data |
|
model_response["model"] = model |
|
input_tokens = 0 |
|
for text in input: |
|
input_tokens+=len(encoding.encode(text)) |
|
|
|
model_response["usage"] = { |
|
"prompt_tokens": input_tokens, |
|
"total_tokens": input_tokens, |
|
} |
|
return model_response |
|
|
|
|
|
|
|
|