|
|
|
|
|
|
|
import sys, os, time |
|
import traceback, asyncio |
|
import pytest |
|
sys.path.insert( |
|
0, os.path.abspath("../..") |
|
) |
|
import litellm |
|
from litellm import Router |
|
from concurrent.futures import ThreadPoolExecutor |
|
from collections import defaultdict |
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
def test_exception_raising(): |
|
|
|
|
|
litellm.set_verbose=True |
|
import openai |
|
try: |
|
print("testing if router raises an exception") |
|
old_api_key = os.environ["AZURE_API_KEY"] |
|
os.environ["AZURE_API_KEY"] = "" |
|
model_list = [ |
|
{ |
|
"model_name": "gpt-3.5-turbo", |
|
"litellm_params": { |
|
"model": "azure/chatgpt-v-2", |
|
"api_key": "bad-key", |
|
"api_version": os.getenv("AZURE_API_VERSION"), |
|
"api_base": os.getenv("AZURE_API_BASE") |
|
}, |
|
"tpm": 240000, |
|
"rpm": 1800 |
|
}, |
|
{ |
|
"model_name": "gpt-3.5-turbo", |
|
"litellm_params": { |
|
"model": "gpt-3.5-turbo", |
|
"api_key": "bad-key", |
|
}, |
|
"tpm": 240000, |
|
"rpm": 1800 |
|
} |
|
] |
|
router = Router(model_list=model_list, |
|
redis_host=os.getenv("REDIS_HOST"), |
|
redis_password=os.getenv("REDIS_PASSWORD"), |
|
redis_port=int(os.getenv("REDIS_PORT")), |
|
routing_strategy="simple-shuffle", |
|
set_verbose=False, |
|
num_retries=1) |
|
response = router.completion( |
|
model="gpt-3.5-turbo", |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": "hello this request will fail" |
|
} |
|
] |
|
) |
|
os.environ["AZURE_API_KEY"] = old_api_key |
|
pytest.fail(f"Should have raised an Auth Error") |
|
except openai.AuthenticationError: |
|
print("Test Passed: Caught an OPENAI AUTH Error, Good job. This is what we needed!") |
|
os.environ["AZURE_API_KEY"] = old_api_key |
|
router.reset() |
|
except Exception as e: |
|
os.environ["AZURE_API_KEY"] = old_api_key |
|
print("Got unexpected exception on router!", e) |
|
|
|
|
|
|
|
def test_reading_key_from_model_list(): |
|
|
|
|
|
litellm.set_verbose=False |
|
import openai |
|
try: |
|
print("testing if router raises an exception") |
|
old_api_key = os.environ["AZURE_API_KEY"] |
|
os.environ.pop("AZURE_API_KEY", None) |
|
model_list = [ |
|
{ |
|
"model_name": "gpt-3.5-turbo", |
|
"litellm_params": { |
|
"model": "azure/chatgpt-v-2", |
|
"api_key": old_api_key, |
|
"api_version": os.getenv("AZURE_API_VERSION"), |
|
"api_base": os.getenv("AZURE_API_BASE") |
|
}, |
|
"tpm": 240000, |
|
"rpm": 1800 |
|
} |
|
] |
|
|
|
router = Router(model_list=model_list, |
|
redis_host=os.getenv("REDIS_HOST"), |
|
redis_password=os.getenv("REDIS_PASSWORD"), |
|
redis_port=int(os.getenv("REDIS_PORT")), |
|
routing_strategy="simple-shuffle", |
|
set_verbose=True, |
|
num_retries=1) |
|
response = router.completion( |
|
model="gpt-3.5-turbo", |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": "hello this request will fail" |
|
} |
|
] |
|
) |
|
os.environ["AZURE_API_KEY"] = old_api_key |
|
router.reset() |
|
except Exception as e: |
|
os.environ["AZURE_API_KEY"] = old_api_key |
|
print(f"FAILED TEST") |
|
pytest.fail(f"Got unexpected exception on router! - {e}") |
|
|
|
|
|
|
|
|
|
|
|
def test_function_calling(): |
|
model_list = [ |
|
{ |
|
"model_name": "gpt-3.5-turbo-0613", |
|
"litellm_params": { |
|
"model": "gpt-3.5-turbo-0613", |
|
"api_key": os.getenv("OPENAI_API_KEY"), |
|
}, |
|
"tpm": 100000, |
|
"rpm": 10000, |
|
}, |
|
] |
|
|
|
messages = [ |
|
{"role": "user", "content": "What is the weather like in Boston?"} |
|
] |
|
functions = [ |
|
{ |
|
"name": "get_current_weather", |
|
"description": "Get the current weather in a given location", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"location": { |
|
"type": "string", |
|
"description": "The city and state, e.g. San Francisco, CA" |
|
}, |
|
"unit": { |
|
"type": "string", |
|
"enum": ["celsius", "fahrenheit"] |
|
} |
|
}, |
|
"required": ["location"] |
|
} |
|
} |
|
] |
|
|
|
router = Router(model_list=model_list, routing_strategy="latency-based-routing") |
|
response = router.completion(model="gpt-3.5-turbo-0613", messages=messages, functions=functions) |
|
router.reset() |
|
print(response) |
|
|
|
def test_acompletion_on_router(): |
|
try: |
|
litellm.set_verbose = False |
|
model_list = [ |
|
{ |
|
"model_name": "gpt-3.5-turbo", |
|
"litellm_params": { |
|
"model": "gpt-3.5-turbo-0613", |
|
"api_key": os.getenv("OPENAI_API_KEY"), |
|
}, |
|
"tpm": 100000, |
|
"rpm": 10000, |
|
}, |
|
{ |
|
"model_name": "gpt-3.5-turbo", |
|
"litellm_params": { |
|
"model": "azure/chatgpt-v-2", |
|
"api_key": os.getenv("AZURE_API_KEY"), |
|
"api_base": os.getenv("AZURE_API_BASE"), |
|
"api_version": os.getenv("AZURE_API_VERSION") |
|
}, |
|
"tpm": 100000, |
|
"rpm": 10000, |
|
} |
|
] |
|
|
|
messages = [ |
|
{"role": "user", "content": f"write a one sentence poem {time.time()}?"} |
|
] |
|
start_time = time.time() |
|
router = Router(model_list=model_list, |
|
redis_host=os.environ["REDIS_HOST"], |
|
redis_password=os.environ["REDIS_PASSWORD"], |
|
redis_port=os.environ["REDIS_PORT"], |
|
cache_responses=True, |
|
timeout=30, |
|
routing_strategy="simple-shuffle") |
|
async def get_response(): |
|
response1 = await router.acompletion(model="gpt-3.5-turbo", messages=messages) |
|
print(f"response1: {response1}") |
|
response2 = await router.acompletion(model="gpt-3.5-turbo", messages=messages) |
|
print(f"response2: {response2}") |
|
assert response1.id == response2.id |
|
assert len(response1.choices[0].message.content) > 0 |
|
assert response1.choices[0].message.content == response2.choices[0].message.content |
|
asyncio.run(get_response()) |
|
router.reset() |
|
except litellm.Timeout as e: |
|
end_time = time.time() |
|
print(f"timeout error occurred: {end_time - start_time}") |
|
pass |
|
except Exception as e: |
|
traceback.print_exc() |
|
pytest.fail(f"Error occurred: {e}") |
|
|
|
|
|
|
|
def test_function_calling_on_router(): |
|
try: |
|
litellm.set_verbose = True |
|
model_list = [ |
|
{ |
|
"model_name": "gpt-3.5-turbo", |
|
"litellm_params": { |
|
"model": "gpt-3.5-turbo-0613", |
|
"api_key": os.getenv("OPENAI_API_KEY"), |
|
}, |
|
}, |
|
] |
|
function1 = [ |
|
{ |
|
"name": "get_current_weather", |
|
"description": "Get the current weather in a given location", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"location": { |
|
"type": "string", |
|
"description": "The city and state, e.g. San Francisco, CA", |
|
}, |
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, |
|
}, |
|
"required": ["location"], |
|
}, |
|
} |
|
] |
|
router = Router( |
|
model_list=model_list, |
|
redis_host=os.getenv("REDIS_HOST"), |
|
redis_password=os.getenv("REDIS_PASSWORD"), |
|
redis_port=os.getenv("REDIS_PORT") |
|
) |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": "what's the weather in boston" |
|
} |
|
] |
|
response = router.completion(model="gpt-3.5-turbo", messages=messages, functions=function1) |
|
print(f"final returned response: {response}") |
|
router.reset() |
|
assert isinstance(response["choices"][0]["message"]["function_call"], dict) |
|
except Exception as e: |
|
print(f"An exception occurred: {e}") |
|
|
|
|
|
|
|
def test_aembedding_on_router(): |
|
litellm.set_verbose = True |
|
try: |
|
model_list = [ |
|
{ |
|
"model_name": "text-embedding-ada-002", |
|
"litellm_params": { |
|
"model": "text-embedding-ada-002", |
|
}, |
|
"tpm": 100000, |
|
"rpm": 10000, |
|
}, |
|
] |
|
|
|
async def embedding_call(): |
|
router = Router(model_list=model_list) |
|
response = await router.aembedding( |
|
model="text-embedding-ada-002", |
|
input=["good morning from litellm", "this is another item"], |
|
) |
|
print(response) |
|
router.reset() |
|
asyncio.run(embedding_call()) |
|
except Exception as e: |
|
traceback.print_exc() |
|
pytest.fail(f"Error occurred: {e}") |
|
|
|
|
|
|
|
def test_azure_aembedding_on_router(): |
|
litellm.set_verbose = True |
|
try: |
|
model_list = [ |
|
{ |
|
"model_name": "text-embedding-ada-002", |
|
"litellm_params": { |
|
"model": "azure/azure-embedding-model", |
|
"api_key":os.environ['AZURE_API_KEY'], |
|
"api_base": os.environ['AZURE_API_BASE'] |
|
}, |
|
"tpm": 100000, |
|
"rpm": 10000, |
|
}, |
|
] |
|
|
|
async def embedding_call(): |
|
router = Router(model_list=model_list) |
|
response = await router.aembedding( |
|
model="text-embedding-ada-002", |
|
input=["good morning from litellm"] |
|
) |
|
print(response) |
|
router.reset() |
|
asyncio.run(embedding_call()) |
|
except Exception as e: |
|
traceback.print_exc() |
|
pytest.fail(f"Error occurred: {e}") |
|
|