import os import json from enum import Enum import requests import time from typing import Callable from litellm.utils import ModelResponse, Usage class BasetenError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message super().__init__( self.message ) # Call the base class constructor with the parameters it needs def validate_environment(api_key): headers = { "accept": "application/json", "content-type": "application/json", } if api_key: headers["Authorization"] = f"Api-Key {api_key}" return headers def completion( model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, optional_params=None, litellm_params=None, logger_fn=None, ): headers = validate_environment(api_key) completion_url_fragment_1 = "https://app.baseten.co/models/" completion_url_fragment_2 = "/predict" model = model prompt = "" for message in messages: if "role" in message: if message["role"] == "user": prompt += f"{message['content']}" else: prompt += f"{message['content']}" else: prompt += f"{message['content']}" data = { "inputs": prompt, "prompt": prompt, "parameters": optional_params, "stream": True if "stream" in optional_params and optional_params["stream"] == True else False } ## LOGGING logging_obj.pre_call( input=prompt, api_key=api_key, additional_args={"complete_input_dict": data}, ) ## COMPLETION CALL response = requests.post( completion_url_fragment_1 + model + completion_url_fragment_2, headers=headers, data=json.dumps(data), stream=True if "stream" in optional_params and optional_params["stream"] == True else False ) if 'text/event-stream' in response.headers['Content-Type'] or ("stream" in optional_params and optional_params["stream"] == True): return response.iter_lines() else: ## LOGGING logging_obj.post_call( input=prompt, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT completion_response = response.json() if "error" in completion_response: raise BasetenError( message=completion_response["error"], status_code=response.status_code, ) else: if "model_output" in completion_response: if ( isinstance(completion_response["model_output"], dict) and "data" in completion_response["model_output"] and isinstance( completion_response["model_output"]["data"], list ) ): model_response["choices"][0]["message"][ "content" ] = completion_response["model_output"]["data"][0] elif isinstance(completion_response["model_output"], str): model_response["choices"][0]["message"][ "content" ] = completion_response["model_output"] elif "completion" in completion_response and isinstance( completion_response["completion"], str ): model_response["choices"][0]["message"][ "content" ] = completion_response["completion"] elif isinstance(completion_response, list) and len(completion_response) > 0: if "generated_text" not in completion_response: raise BasetenError( message=f"Unable to parse response. Original response: {response.text}", status_code=response.status_code ) model_response["choices"][0]["message"]["content"] = completion_response[0]["generated_text"] ## GETTING LOGPROBS if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]: model_response.choices[0].finish_reason = completion_response[0]["details"]["finish_reason"] sum_logprob = 0 for token in completion_response[0]["details"]["tokens"]: sum_logprob += token["logprob"] model_response["choices"][0]["message"]._logprobs = sum_logprob else: raise BasetenError( message=f"Unable to parse response. Original response: {response.text}", status_code=response.status_code ) ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. prompt_tokens = len(encoding.encode(prompt)) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"]["content"]) ) model_response["created"] = int(time.time()) model_response["model"] = model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens ) model_response.usage = usage return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass