not-lain's picture
Update app.py
80a7762 verified
import gradio as gr
import torch
EXAMPLE_MD = """
```python
import torch
t1 = torch.arange({n1}).view({dim1})
t2 = torch.arange({n2}).view({dim2})
(t1 @ t2).shape = {out_shape}
```
"""
matrix_loop = """```python
out = 0
for i, j in zip(t1, t2):
out += i * j
```
"""
def generate_example(dim1: list, dim2: list):
n1 = 1
n2 = 1
for i in dim1:
n1 *= i
for i in dim2:
n2 *= i
t1 = torch.arange(n1).view(dim1)
t2 = torch.arange(n2).view(dim2)
try:
out_shape = list((t1 @ t2).shape)
except RuntimeError:
out_shape = "error"
code = EXAMPLE_MD.format(
n1=str(n1), dim1=str(dim1), n2=str(n2), dim2=str(dim2), out_shape=str(out_shape)
)
return dim1, dim2, code
def sanitize_dimension(dim):
if dim is None:
gr.Error("one of the dimensions is empty, please fill it")
if "[" in dim:
dim = dim.replace("[", "")
if "]" in dim:
dim = dim.replace("]", "")
if "," in dim:
dim = dim.replace(",", " ").strip()
out = [int(i.strip()) for i in dim.split()]
else:
out = [int(dim.strip())]
if 0 in out:
gr.Error(
"Found the number 0 in one of the dimensions which is not allowed, consider using 1 instead"
)
return out
def create_row(dim, is_dim=None, checks=None, version=1):
out = "| "
n_dim = len(dim)
for i in range(n_dim):
if version == 1:
# infered last dims
if (is_dim == 1 and i == n_dim - 2) or (is_dim == 2 and i == n_dim - 1):
color = "green"
out += f"<strong style='color: {color}'> {dim[i]} </strong>| "
# check every normal dimension
elif (is_dim == 1 and i != n_dim - 1) or (is_dim == 2 and i == n_dim - 1):
color = "green" if checks[i] == "V" else "red"
out += f"<strong style='color: {color}'> {dim[i]} </strong>| "
# checks last 2 dims
elif (is_dim == 1 and i == n_dim - 1) or (is_dim == 2 and i == n_dim - 2):
color = "blue" if checks[i] == "V" else "yellow"
out += f"<strong style='color: {color}'> {dim[i]} </strong>| "
# when using this function without checks
else:
out += f"{dim[i]} | "
if version == 2:
if is_dim == 1 and i != n_dim - 1:
out += f"<strong style='color: green'> {dim[i]} </strong>| "
elif i == n_dim - 1:
color = "blue" if checks[i] == "V" else "yellow"
out += f"<strong style='color: {color}'> {dim[i]} </strong>| "
else:
out += f"{dim[i]} | "
return out + "\n"
def create_header(n_dim, checks=None):
checks = ["<!-- -->"] * n_dim if checks is None else checks
out = "| "
for i in checks:
out = out + i + " | "
out += "\n" + "|---" * n_dim + "|\n"
return out
def generate_table(dim1, dim2, checks=None, version=1):
n_dim = len(dim1)
table = create_header(n_dim, checks)
# tensor 1
if not checks:
table += create_row(dim1)
else:
table += create_row(dim1, 1, checks, version)
# tensor 2
if not checks:
table += create_row(dim2)
else:
table += create_row(dim2, 2, checks, version)
return table
def alignment_and_fill_with_ones(dim1, dim2):
n_dim = max(len(dim1), len(dim2))
if len(dim1) == len(dim2):
pass
elif len(dim1) < len(dim2):
placeholder = [1] * (n_dim - len(dim1))
placeholder.extend(dim1)
dim1 = placeholder
else:
placeholder = [1] * (n_dim - len(dim2))
placeholder.extend(dim2)
dim2 = placeholder
return dim1, dim2
def check_validity(dim1, dim2):
out = []
for i in range(len(dim1) - 2):
if dim1[i] == dim2[i]:
out.append("V")
else:
out.append("X")
# final dims
if dim1[-1] == dim2[-2]:
out.extend(["V", "V"])
else:
out.extend(["X", "X"])
return out
def substitute_ones_with_concat(dim1, dim2, version=1):
n = len(dim1) - 2 if version == 1 else len(dim1) - 1
for i in range(n):
dim1[i] = dim2[i] if dim1[i] == 1 else dim1[i]
dim2[i] = dim1[i] if dim2[i] == 1 else dim2[i]
return dim1, dim2
def predict(dim1, dim2):
dim1 = sanitize_dimension(dim1)
dim2 = sanitize_dimension(dim2)
n1, n2 = len(dim1), len(dim2)
dim1, dim2, out = generate_example(dim1, dim2)
# TODO
if n1 > 1 and n2 > 1:
# Table 1
dim1, dim2 = alignment_and_fill_with_ones(dim1, dim2)
table1 = generate_table(dim1, dim2)
# Table 2
dim1, dim2 = substitute_ones_with_concat(dim1, dim2)
table2 = generate_table(dim1, dim2)
# Table 3
checks = check_validity(dim1, dim2)
table3 = generate_table(dim1, dim2, checks)
out += "\n# Step1 (alignment and pre_append with ones)\n" + table1
out += (
"\n# Step2 (substitute columns that have 1 with concat)\nexcept for last 2 dimensions\n"
+ table2
)
out += "\n# Step3 (check if matrix multiplication is valid)\n"
out += "* last dimension of dim1 should equal before last dimension of dim2 (blue or yellow colors)\n"
out += (
"* all the other dimensions should be equal to one another (green or red colors)\n\n"
+ table3
)
if "X" not in checks:
dim1[-1] = dim2[-1]
out += "\n# Final dimension\n"
out += "as highlighted in <strong style='color:green'> green </strong> \n\n"
out += f"`output.shape = {dim1}`"
# case single dims
elif n1 == 1 and n2 == 1:
out += "# Single Dimensional Cases\n"
out += "When both matricies have only single dims they should both have the same number of values in the first dimension\n"
out += "meaning that `t1.shape == t2.shape`\n"
out += "the output is a single value, think : \n"
out += matrix_loop
else:
out += "# One of the tensors has a single dimension\n"
out += "In this case we need to assert that the last dimension of `t1` "
out += "is equal to the last dimension of `t2`\n"
out += "Once the assertion is valid then we get rid of the last dimension and keep the rest\n"
out += "# Step 1 (alignment and fill with ones)\n"
dim1, dim2 = alignment_and_fill_with_ones(dim1, dim2)
table = generate_table(dim1, dim2)
out += table
out += "\n# Step2 (susbtitute columns that have 1 with concat)\n"
out += "fill all previous columns with ones\n"
dim1, dim2 = substitute_ones_with_concat(dim1, dim2, 2)
checks = ["V"] * (len(dim1) - 1)
if dim1[-1] == dim2[-1]:
checks.append("V")
else:
checks.append("X")
table = generate_table(dim1, dim2, checks, 2)
out += table
if "X" not in checks:
out += "\n#Final dimension"
out += "The final dimension is everything colored in <strong style='color:green'> green </strong> \n"
out += f"\nfinal dimension = `{dim1[:-1]}` "
return out
demo = gr.Interface(
predict,
inputs=["text", "text"],
outputs=["markdown"],
examples=[
["9,2,1,3,3", "5,3,7"],
["7,4,2,3", "5,2,7"],
["4,5,6,7", "7"],
["7,5,3", "4"],
["5", "5"],
["8", "2"],
],
title= "Pytorch Matrix Multiplication",
description= """There are 3 cases which are covered in the examples:
* Both matricies have dimensions bigger than 1
* One of the matracies have a single dimension
* Both Matracies have a single dimension
""",
)
demo.launch(debug=True)