fix corner cases
Browse files
app.py
CHANGED
@@ -16,6 +16,12 @@ t2 = torch.arange({n2}).view({dim2})
|
|
16 |
|
17 |
"""
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def generate_example(dim1: list, dim2: list):
|
21 |
n1 = 1
|
@@ -58,25 +64,35 @@ def sanitize_dimention(dim):
|
|
58 |
return out
|
59 |
|
60 |
|
61 |
-
def create_row(dim,is_dim=None,checks=None):
|
62 |
out = "| "
|
63 |
n_dim = len(dim)
|
64 |
for i in range(n_dim):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
return out + "\n"
|
81 |
|
82 |
|
@@ -89,20 +105,20 @@ def create_header(n_dim, checks=None):
|
|
89 |
return out
|
90 |
|
91 |
|
92 |
-
def generate_table(dim1, dim2, checks=None):
|
93 |
n_dim = len(dim1)
|
94 |
table = create_header(n_dim, checks)
|
95 |
# tensor 1
|
96 |
if not checks :
|
97 |
table += create_row(dim1)
|
98 |
else :
|
99 |
-
table += create_row(dim1,1,checks)
|
100 |
|
101 |
# tensor 2
|
102 |
if not checks :
|
103 |
table += create_row(dim2)
|
104 |
else :
|
105 |
-
table += create_row(dim2,2,checks)
|
106 |
return table
|
107 |
|
108 |
|
@@ -122,8 +138,6 @@ def alignment_and_fill_with_ones(dim1, dim2):
|
|
122 |
return dim1, dim2
|
123 |
|
124 |
def check_validity(dim1,dim2):
|
125 |
-
if len(dim1) < 2:
|
126 |
-
return ["WIP"] * len(dim1)
|
127 |
out = []
|
128 |
for i in range(len(dim1)-2):
|
129 |
if dim1[i] == dim2[i]:
|
@@ -138,8 +152,9 @@ def check_validity(dim1,dim2):
|
|
138 |
return out
|
139 |
|
140 |
|
141 |
-
def substitute_ones_with_concat(dim1,dim2):
|
142 |
-
|
|
|
143 |
dim1[i] = dim2[i] if dim1[i] == 1 else dim1[i]
|
144 |
dim2[i] = dim1[i] if dim2[i] == 1 else dim2[i]
|
145 |
return dim1, dim2
|
@@ -147,30 +162,63 @@ def substitute_ones_with_concat(dim1,dim2):
|
|
147 |
def predict(dim1, dim2):
|
148 |
dim1 = sanitize_dimention(dim1)
|
149 |
dim2 = sanitize_dimention(dim2)
|
150 |
-
|
|
|
151 |
# TODO
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
return out
|
175 |
|
176 |
|
|
|
16 |
|
17 |
"""
|
18 |
|
19 |
+
matrix_loop = """```python
|
20 |
+
out = 0
|
21 |
+
for i, j in zip(t1, t2):
|
22 |
+
out += i * j
|
23 |
+
```
|
24 |
+
"""
|
25 |
|
26 |
def generate_example(dim1: list, dim2: list):
|
27 |
n1 = 1
|
|
|
64 |
return out
|
65 |
|
66 |
|
67 |
+
def create_row(dim,is_dim=None,checks=None,version=1):
|
68 |
out = "| "
|
69 |
n_dim = len(dim)
|
70 |
for i in range(n_dim):
|
71 |
+
if version == 1 :
|
72 |
+
# infered last dims
|
73 |
+
if (is_dim ==1 and i == n_dim-2) or (is_dim ==2 and i ==n_dim-1):
|
74 |
+
color = "green"
|
75 |
+
out += f"<strong style='color: {color}'> {dim[i]} </strong>| "
|
76 |
+
# check every normal dimension
|
77 |
+
elif (is_dim ==1 and i != n_dim-1) or (is_dim ==2 and i ==n_dim-1):
|
78 |
+
color = "green" if checks[i] == "V" else "red"
|
79 |
+
out += f"<strong style='color: {color}'> {dim[i]} </strong>| "
|
80 |
+
# checks last 2 dims
|
81 |
+
elif (is_dim ==1 and i == n_dim-1) or (is_dim ==2 and i ==n_dim-2):
|
82 |
+
color = "blue" if checks[i] == "V" else "yellow"
|
83 |
+
out += f"<strong style='color: {color}'> {dim[i]} </strong>| "
|
84 |
+
# when using this function without checks
|
85 |
+
else :
|
86 |
+
out+= f"{dim[i]} | "
|
87 |
+
if version == 2 :
|
88 |
+
if (is_dim == 1 and i != n_dim-1) :
|
89 |
+
out += f"<strong style='color: green'> {dim[i]} </strong>| "
|
90 |
+
elif i == n_dim-1 :
|
91 |
+
color = "blue" if checks[i] == "V" else "yellow"
|
92 |
+
out += f"<strong style='color: {color}'> {dim[i]} </strong>| "
|
93 |
+
else :
|
94 |
+
out += f"{dim[i]} | "
|
95 |
+
|
96 |
return out + "\n"
|
97 |
|
98 |
|
|
|
105 |
return out
|
106 |
|
107 |
|
108 |
+
def generate_table(dim1, dim2, checks=None,version=1):
|
109 |
n_dim = len(dim1)
|
110 |
table = create_header(n_dim, checks)
|
111 |
# tensor 1
|
112 |
if not checks :
|
113 |
table += create_row(dim1)
|
114 |
else :
|
115 |
+
table += create_row(dim1,1,checks,version)
|
116 |
|
117 |
# tensor 2
|
118 |
if not checks :
|
119 |
table += create_row(dim2)
|
120 |
else :
|
121 |
+
table += create_row(dim2,2,checks,version)
|
122 |
return table
|
123 |
|
124 |
|
|
|
138 |
return dim1, dim2
|
139 |
|
140 |
def check_validity(dim1,dim2):
|
|
|
|
|
141 |
out = []
|
142 |
for i in range(len(dim1)-2):
|
143 |
if dim1[i] == dim2[i]:
|
|
|
152 |
return out
|
153 |
|
154 |
|
155 |
+
def substitute_ones_with_concat(dim1,dim2,version = 1):
|
156 |
+
n = len(dim1)-2 if version ==1 else len(dim1)-1
|
157 |
+
for i in range(n):
|
158 |
dim1[i] = dim2[i] if dim1[i] == 1 else dim1[i]
|
159 |
dim2[i] = dim1[i] if dim2[i] == 1 else dim2[i]
|
160 |
return dim1, dim2
|
|
|
162 |
def predict(dim1, dim2):
|
163 |
dim1 = sanitize_dimention(dim1)
|
164 |
dim2 = sanitize_dimention(dim2)
|
165 |
+
n1 , n2 = len(dim1) , len(dim2)
|
166 |
+
dim1, dim2, out = generate_example(dim1, dim2)
|
167 |
# TODO
|
168 |
+
if n1 >1 and n2 > 1 :
|
169 |
+
# Table 1
|
170 |
+
dim1, dim2 = alignment_and_fill_with_ones(dim1, dim2)
|
171 |
+
table1 = generate_table(dim1, dim2)
|
172 |
+
# Table 2
|
173 |
+
dim1, dim2 = substitute_ones_with_concat(dim1,dim2)
|
174 |
+
table2 = generate_table(dim1, dim2)
|
175 |
+
# Table 3
|
176 |
+
checks = check_validity(dim1,dim2)
|
177 |
+
table3 = generate_table(dim1,dim2,checks)
|
178 |
+
|
179 |
+
out += "\n# Step1 (alignment and pre_append with ones)\n" + table1
|
180 |
+
out += "\n# Step2 (susbtitute columns that have 1 with concat)\nexcept for last 2 dimensions\n" + table2
|
181 |
+
out += "\n# Step3 (check if matrix multiplication is valid)\n"
|
182 |
+
out += "* last dimension of dim1 should equal before last dimension of dim2 (blue or yellow colors)\n"
|
183 |
+
out += "* all the other dimensions should be equal to one another (green or red colors)\n\n" + table3
|
184 |
+
if "X" not in checks :
|
185 |
+
dim1[-1] = dim2[-1]
|
186 |
+
out += "\n# Final dimension\n"
|
187 |
+
out+="as highlighted in <strong style='color:green'> green </strong> \n\n"
|
188 |
+
out+= f"`output.shape = {dim1}`"
|
189 |
+
# case single dims
|
190 |
+
elif n1 == 1 and n2 == 1 :
|
191 |
+
out += "# Single Dimensional Cases\n"
|
192 |
+
out += "When both matricies have only single dims they should both have the same number of values in the first dimension\n"
|
193 |
+
out += "meaning that `t1.shape == t2.shape`\n"
|
194 |
+
out += "the output is a single value, think : \n"
|
195 |
+
out += matrix_loop
|
196 |
+
else :
|
197 |
+
out += "# One of the dimensions is a single dimension\n"
|
198 |
+
out += "In this case we need to assert that the last dimension of `t1` "
|
199 |
+
out += "is equal to the last dimension of `t2`\n"
|
200 |
+
out += "Once the assertion is valid then we get rid of the last dimension and keep the rest\n"
|
201 |
+
out += "# Step 1 (alignment and fill with ones)\n"
|
202 |
+
dim1, dim2 = alignment_and_fill_with_ones(dim1, dim2)
|
203 |
+
table = generate_table(dim1, dim2)
|
204 |
+
out += table
|
205 |
+
out += "\n# Step2 (susbtitute columns that have 1 with concat)\n"
|
206 |
+
out += ""
|
207 |
+
dim1, dim2 = substitute_ones_with_concat(dim1,dim2,2)
|
208 |
+
checks = ["V"] * (len(dim1)-1)
|
209 |
+
if dim1[-1] == dim2[-1] :
|
210 |
+
checks.append("V")
|
211 |
+
else :
|
212 |
+
checks.append("X")
|
213 |
+
table = generate_table(dim1, dim2,checks,2)
|
214 |
+
out+= table
|
215 |
+
if "X" not in checks :
|
216 |
+
out += "\n#Final dimension"
|
217 |
+
out += "The final dimension is everything colored in <strong style='color:green'> green </strong> \n"
|
218 |
+
out += f"\nfinal dimension = `{dim1[:-1]}` "
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
return out
|
223 |
|
224 |
|