File size: 3,663 Bytes
a6e878e
 
 
07ffad3
 
a6e878e
 
43ae797
a6e878e
 
 
 
 
 
07ffad3
 
bc4ea4b
a6e878e
 
 
 
 
 
 
 
18b530b
a6e878e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b048b4
a6e878e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import re
ckpt = "Xkev/Llama-3.2V-11B-cot"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
    torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)


@spaces.GPU
def bot_streaming(message, history, max_new_tokens=250):
    
    txt = message["text"]
    ext_buffer = f"{txt}"
    
    messages= [] 
    images = []
    

    for i, msg in enumerate(history): 
        if isinstance(msg[0], tuple):
            messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
            images.append(Image.open(msg[0][0]).convert("RGB"))
        elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
            # messages are already handled
            pass
        elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
            messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

    # add current message
    if len(message["files"]) == 1:
        
        if isinstance(message["files"][0], str): # examples
            image = Image.open(message["files"][0]).convert("RGB")
        else: # regular input
            image = Image.open(message["files"][0]["path"]).convert("RGB")
        images.append(image)
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
    else:
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})


    texts = processor.apply_chat_template(messages, add_generation_prompt=True)

    if images == []:
        inputs = processor(text=texts, return_tensors="pt").to("cuda")
    else:
        inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
        
    streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)

    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.6, top_p=0.9)
    generated_text = ""
    
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    
    for new_text in streamer:
        buffer += new_text
        generated_text_without_prompt = buffer
        time.sleep(0.01)
    
        buffer = re.sub(r"<(\w+)>", r"\<\1\>", buffer)  
        buffer = re.sub(r"</(\w+)>", r"\</\1\>", buffer)    
    
        yield buffer


demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA-CoT",
      textbox=gr.MultimodalTextbox(), 
      additional_inputs = [gr.Slider(
              minimum=512,
              maximum=1024,
              value=512,
              step=1,
              label="Maximum number of new tokens to generate",
          )
        ],
      examples=[[{"text": "What is on the flower?", "files": ["./Example1.webp"]},512],
                [{"text": "How to make this pastry?", "files": ["./Example2.png"]},512]],
      cache_examples=False,
      description="Upload an image, and start chatting about it. To learn more about LLaVA-CoT, visit [our GitHub page](https://github.com/PKU-YuanGroup/LLaVA-CoT).",
      stop_btn="Stop Generation", 
      fill_height=True,
    multimodal=True)
    
demo.launch(debug=True)