File size: 4,115 Bytes
07ffad3 42df98c 1b7e4b0 07ffad3 eaca477 1b7e4b0 07ffad3 1b7e4b0 eaca477 1b7e4b0 07ffad3 eaca477 1b7e4b0 07ffad3 eaca477 1b7e4b0 eaca477 1b7e4b0 42df98c eaca477 1b7e4b0 eaca477 1b7e4b0 07ffad3 1b7e4b0 eaca477 07ffad3 eaca477 07ffad3 eaca477 1b7e4b0 07ffad3 42df98c 07ffad3 eaca477 07ffad3 eaca477 1b7e4b0 07ffad3 1b7e4b0 07ffad3 42df98c 07ffad3 1b7e4b0 07ffad3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
from datasets import load_dataset
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
token = os.environ["HF_TOKEN"]
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-7b-it",
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
torch_dtype=torch.float16,
token=token,
)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-it", token=token)
device = torch.device("cuda")
model = model.to(device)
RAG = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
TOP_K = 3
# prepare data
# since data is too big we will only select the first 3K lines
data = load_dataset("not-lain/wikipedia-small-3000-embedded", subset="train")
# index dataset
data.add_faiss_index("embedding", device=1)
@spaces.GPU
def search(query: str, k: int = TOP_K):
embedded_query = model.encode(query)
scores, retrieved_examples = data.get_nearest_examples(
"embedding", embedded_query, k=k
)
return retrieved_examples
def prepare_prompt(query, retrieved_examples):
prompt = (
f"Query: {query}\nContinue to answer the query by using the Search Results:\n"
)
urls = []
titles = retrieved_examples["title"][::-1]
texts = retrieved_examples["text"][::-1]
urls = retrieved_examples["url"][::-1]
titles = titles[::-1]
for i in range(TOP_K):
prompt += f"Title: {titles[i]}, Text: {texts[i]}\n"
return prompt, (titles, urls)
@spaces.GPU
def talk(message, history):
retrieved_examples = search(message)
message, metadata = prepare_prompt(message, retrieved_examples)
resources = "\nRESOURCES:\n"
for title, url in metadata:
resources += f"[{title}]({url}), "
chat = []
for item in history:
chat.append({"role": "user", "content": item[0]})
if item[1] is not None:
cleaned_past = item[1].split("\nRESOURCES:\n")[0]
chat.append({"role": "assistant", "content": cleaned_past})
chat.append({"role": "user", "content": message})
messages = tokenizer.apply_chat_template(
chat, tokenize=False, add_generation_prompt=True
)
# Tokenize the messages string
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
top_p=0.95,
top_k=1000,
temperature=0.75,
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Initialize an empty string to store the generated text
partial_text = ""
for new_text in streamer:
partial_text += new_text
yield partial_text
partial_text += resources
yield partial_text
TITLE = "RAG"
DESCRIPTION = """
## Resources used to build this project
* embedding model : https://huggingface.co/mixedbread-ai/mxbai-colbert-large-v1
* dataset : https://huggingface.co/datasets/not-lain/wikipedia-small-3000-embedded (used mxbai-colbert-large-v1 to create the embedding column )
* faiss docs : https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index
* chatbot : google/gemma-7b-it
If you want to support my work please click on the heart react button ❤️🤗
<sub><sup><sub><sup>psst, I am still open for work if please reach me out at https://not-lain.github.io/</sup></sub></sup></sub>
"""
demo = gr.ChatInterface(
fn=talk,
chatbot=gr.Chatbot(
show_label=True,
show_share_button=True,
show_copy_button=True,
likeable=True,
layout="bubble",
bubble_full_width=False,
),
theme="Soft",
examples=[["what is machine learning"]],
title=TITLE,
description=DESCRIPTION,
)
demo.launch()
|