Spaces:
Running
Running
File size: 5,147 Bytes
e987d7b b47dcdb e027770 29afe26 e027770 e987d7b 3531f81 87d4ac1 e027770 3531f81 899ca8c 3531f81 899ca8c 3531f81 899ca8c 3531f81 899ca8c 3531f81 899ca8c 3531f81 899ca8c 3531f81 899ca8c 3531f81 e027770 24b90ae e027770 3531f81 e027770 3531f81 e027770 3531f81 3eab446 3531f81 e027770 87d4ac1 3531f81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# Start by setting token and debug mode before starting schedulers
import os
from huggingface_hub import logging
logging.set_verbosity_debug()
# Start apps
from pathlib import Path
import gradio as gr
from app_1M_image import get_demo as get_demo_1M_image
from app_image import get_demo as get_demo_image
from app_json import get_demo as get_demo_json
# from app_parquet import get_demo as get_demo_parquet
def _get_demo_code(path: str) -> str:
code = Path(path).read_text()
code = code.replace("def get_demo():", "with gr.Blocks() as demo:")
code += "\n\ndemo.launch()"
return code
DEMO_EXPLANATION = """
<h1 style='text-align: center; margin-bottom: 1rem'> How to persist data from a Space to a Dataset? </h1>
This demo shows how to leverage `gradio` and `huggingface_hub` to save data from a Space to a Dataset on the Hub.
When doing so, a few things must be taken care of: file formats, concurrent writes, name collision, number of commits,
number of files, and more. The tabs below show different ways of implementing a "save to dataset" feature. Depending on the
complexity and usage of your app, you might want to use one or the other.
This Space comes as a demo for this `huggingface_hub` [guide](https://huggingface.co/docs/huggingface_hub/main/en/guides/upload#scheduled-uploads). Please check it out if you need more technical details.
"""
JSON_DEMO_EXPLANATION = """
## Use case
- Save inputs and outputs
- Build an annotation platform
## Data
Json-able only: text and numeric but no binaries.
## Robustness
Works with concurrent users and replicas.
## Limitations
If you expect millions of lines, you must split the local JSON file into multiple files to avoid getting your file tracked as LFS (5MB) on the Hub.
## Demo
"""
IMAGE_DEMO_EXPLANATION = """
## Use case
Save images with metadata (caption, parameters, datetime, etc.).
## Robustness
Works with concurrent users and replicas.
## Limitations
- only 10k images/folder are supported on the Hub. If you expect more usage, you must save data in subfolders.
- only 1M images/repo supported on the Hub. If you expect more usage, you can zip your data before uploading. See the _1M images Dataset_ demo.
## Demo
"""
IMAGE_1M_DEMO_EXPLANATION = """
## Use case:
Save 1M images with metadata (caption, parameters, datetime, etc.).
## Robustness
Works with concurrent users and replicas.
## Limitations
Only 1 image per row. This is fine for most image datasets. However in some cases you might want to save multiple images per row
(e.g. generate 4 images and select the preferred one). In this case, you must encode how the dataset must be saved, as
a parquet file. Please have a look to the Parquet example for more details.
## Demo
"""
PARQUET_DEMO_EXPLANATION = """
## Use case:
Save any arbitrary dataset, no matter its size or format. If well configured, your dataset will be directly loadable with the `datasets` library
and benefit from the dataset-preview on the Hub.
Each row can contain metadata (text, numbers, datetimes,...) as well as binary data (images, audio, video,...).
This is particularly useful for datasets with multiple binary files for each row:
- Generate multiple images and select preferred one.
- Take audio as input, generate a translated audio as output.
## Robustness
Works with concurrent users and replicas.
## Limitations
None. Implementation of the ParquetScheduler requires slightly more work but you get full control over the data that is
pushed to the Hub.
## Demo
"""
with gr.Blocks() as demo:
gr.Markdown(DEMO_EXPLANATION)
with gr.Tab("JSON Dataset"):
gr.Markdown(JSON_DEMO_EXPLANATION)
get_demo_json()
gr.Markdown(
"## Result\n\nhttps://huggingface.co/datasets/Wauplin/example-space-to-dataset-json\n\n## Code"
)
with gr.Accordion("Source code", open=True):
gr.Code(_get_demo_code("app_json.py"), language="python")
with gr.Tab("Image Dataset"):
gr.Markdown(IMAGE_DEMO_EXPLANATION)
get_demo_image()
gr.Markdown(
"## Result\n\nhttps://huggingface.co/datasets/Wauplin/example-space-to-dataset-image\n\n## Code"
)
with gr.Accordion("Source code", open=True):
gr.Code(_get_demo_code("app_image.py"), language="python")
with gr.Tab("1M images Dataset"):
gr.Markdown(IMAGE_1M_DEMO_EXPLANATION)
get_demo_1M_image()
gr.Markdown(
"## Result\n\nhttps://huggingface.co/datasets/Wauplin/example-space-to-dataset-image-zip\n\n## Code"
)
with gr.Accordion("Source code", open=True):
gr.Code(_get_demo_code("app_1M_image.py"), language="python")
# with gr.Tab("Parquet Dataset (e.g. save user preferences)"):
# gr.Markdown(PARQUET_DEMO_EXPLANATION)
# get_demo_parquet()
# gr.Markdown(
# "## Result\n\nhttps://huggingface.co/datasets/Wauplin/example-space-to-dataset-parquet\n\n## Code"
# )
# with gr.Accordion("Source code", open=True):
# gr.Code(_get_demo_code("app_parquet.py"), language="python")
demo.launch()
|