Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import time | |
import numpy as np | |
from torch.nn import functional as F | |
import os | |
from threading import Thread | |
import spaces | |
token = os.environ["HF_TOKEN"] | |
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", | |
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
torch_dtype=torch.float16, | |
token=token) | |
tok = AutoTokenizer.from_pretrained("google/gemma-2b-it",token=token) | |
# using CUDA for an optimal experience | |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
device = torch.device('cuda') | |
model = model.to(device) | |
def chat(message, history): | |
chat = [] | |
for item in history: | |
chat.append({"role": "user", "content": item[0]}) | |
if item[1] is not None: | |
chat.append({"role": "assistant", "content": item[1]}) | |
chat.append({"role": "user", "content": message}) | |
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) | |
# Tokenize the messages string | |
model_inputs = tok([messages], return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer( | |
tok, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.95, | |
top_k=1000, | |
temperature=0.75, | |
num_beams=1, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
# Initialize an empty string to store the generated text | |
partial_text = "" | |
for new_text in streamer: | |
# print(new_text) | |
partial_text += new_text | |
# Yield an empty string to cleanup the message textbox and the updated conversation history | |
yield partial_text | |
demo = gr.ChatInterface(fn=chat, examples=[["Write me a poem about Machine Learning."]], title="gemma 2b-it") | |
demo.launch() | |