Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, pipeline | |
import torch | |
tokenizer1 = AutoTokenizer.from_pretrained("notexist/ttt") | |
tdk1 = pipeline('text-generation', model='notexist/ttt', tokenizer=tokenizer) | |
tokenizer2 = AutoTokenizer.from_pretrained("notexist/ttt") | |
tdk2 = pipeline('text-generation', model='notexist/ttt', tokenizer=tokenizer) | |
def predict(name, sl, topk, topp): | |
if name == "": | |
x1 = tdk1(f"<|endoftext|>", | |
do_sample=True, | |
max_length=64, | |
top_k=topk, | |
top_p=topp, | |
num_return_sequences=1, | |
repetition_penalty=sl | |
)[0]["generated_text"] | |
x2 = tdk1(f"<|endoftext|>", | |
do_sample=True, | |
max_length=64, | |
top_k=topk, | |
top_p=topp, | |
num_return_sequences=1, | |
repetition_penalty=sl | |
)[0]["generated_text"] | |
return x1[len(f"<|endoftext|>"):]+"\n\n"+x2[len(f"<|endoftext|>"):] | |
else: | |
x1 = tdk1(f"<|endoftext|>{name}\n\n", | |
do_sample=True, | |
max_length=64, | |
top_k=topk, | |
top_p=topp, | |
num_return_sequences=1, | |
repetition_penalty=sl | |
)[0]["generated_text"] | |
x2 = tdk2(f"<|endoftext|>{name}\n\n", | |
do_sample=True, | |
max_length=64, | |
top_k=topk, | |
top_p=topp, | |
num_return_sequences=1, | |
repetition_penalty=sl | |
)[0]["generated_text"] | |
return x1[len(f"<|endoftext|>{name}\n\n"):]+"\n\n"+x2[len(f"<|endoftext|>{name}\n\n"):] | |
iface = gr.Interface(fn=predict, inputs=["text",\ | |
gr.inputs.Slider(0, 3, default=1.1, label="repetition_penalty"),\ | |
gr.inputs.Slider(0, 100, default=75, label="top_k"),\ | |
gr.inputs.Slider(0, 1, default=0.95, label="top_p")] | |
, outputs="text") | |
iface.launch() | |