nouamanetazi HF staff commited on
Commit
7551cd5
·
1 Parent(s): 028a426

update app

Browse files
app.py CHANGED
@@ -29,10 +29,7 @@ state_dict = torch.load(ckpts[0], map_location=torch.device(device))['state_dict
29
  net = Model_LA(args, len(token_to_ix), pretrained_emb).to(device)
30
  net.load_state_dict(state_dict)
31
 
32
-
33
-
34
  def inference(video_path, text):
35
-
36
  # data preprocessing
37
  # text
38
  def clean(w):
@@ -54,9 +51,18 @@ def inference(video_path, text):
54
  A = pad_feature(mel, a_max_len)
55
  V = pad_feature(mel, v_max_len)
56
  # print shapes
57
- print("Processed text shape: ", L.shape)
58
- print("Processed audio shape: ", A.shape)
59
- print("Processed video shape: ", V.shape)
 
 
 
 
 
 
 
 
 
60
  return out
61
 
62
 
@@ -69,18 +75,14 @@ description="This is a demo implementation of EfficientNetV2 Deepfakes Image Det
69
  "
70
 
71
  examples = [
72
- ['Video1-fake-1-ff.mp4'],
73
- ['Video6-real-1-ff.mp4'],
74
- ['Video3-fake-3-ff.mp4'],
75
- ['Video8-real-3-ff.mp4'],
76
- ['real-1.mp4'],
77
- ['fake-1.mp4'],
78
  ]
79
 
80
  gr.Interface(inference,
81
  inputs = ["video", "text"],
82
- outputs=["text","text", gr.outputs.Video(label="Detected face sequence")],
83
  title=title,
84
  description=description,
85
  examples=examples
86
- ).launch()
 
29
  net = Model_LA(args, len(token_to_ix), pretrained_emb).to(device)
30
  net.load_state_dict(state_dict)
31
 
 
 
32
  def inference(video_path, text):
 
33
  # data preprocessing
34
  # text
35
  def clean(w):
 
51
  A = pad_feature(mel, a_max_len)
52
  V = pad_feature(mel, v_max_len)
53
  # print shapes
54
+ print(f"Processed text shape from {len(s)} to {L.shape}")
55
+ print(f"Processed audio shape from {mel.shape} to {A.shape}")
56
+ print(f"Processed video shape from {mel.shape} to {V.shape}")
57
+
58
+ net.train(False)
59
+ x = np.expand_dims(L,axis=0)
60
+ y = np.expand_dims(A,axis=0)
61
+ z = np.expand_dims(V,axis=0)
62
+ x, y, z = torch.from_numpy(x).to(device), torch.from_numpy(y).to(device), torch.from_numpy(z).float().to(device)
63
+ pred = net(x, y, z).cpu().data.numpy()
64
+ label_to_ix = ['happy', 'sad', 'angry', 'fear', 'disgust', 'surprise']
65
+ result_dict = dict(zip(label_to_ix, pred[0]))
66
  return out
67
 
68
 
 
75
  "
76
 
77
  examples = [
78
+ ['examples/03bSnISJMiM_1.mp4', "IT WAS REALLY GOOD "],
79
+ ['examples/03bSnISJMiM_5.mp4', "AND THEY SHOULDVE I GUESS "],
 
 
 
 
80
  ]
81
 
82
  gr.Interface(inference,
83
  inputs = ["video", "text"],
84
+ outputs=["label"],
85
  title=title,
86
  description=description,
87
  examples=examples
88
+ ).launch(debug=True)
examples/03bSnISJMiM_1.mp4 ADDED
Binary file (193 kB). View file
 
examples/03bSnISJMiM_5.mp4 ADDED
Binary file (62.1 kB). View file
 
requirements.txt CHANGED
@@ -1 +1,2 @@
1
- https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz
 
 
1
+ https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz
2
+ torch==1.9.1