File size: 18,125 Bytes
78b8f5f
c5ba729
72164ba
 
c5ba729
 
 
 
 
 
 
72164ba
 
 
78b8f5f
72164ba
 
 
 
890b9fd
a907317
72164ba
 
 
c5ba729
 
72164ba
 
c5ba729
 
 
 
890b9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a907317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ba729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72164ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ba729
 
 
 
 
72164ba
 
 
c5ba729
 
 
 
 
72164ba
 
c5ba729
 
 
 
 
72164ba
 
c5ba729
 
 
 
 
72164ba
 
c5ba729
 
 
 
 
72164ba
 
c5ba729
 
 
 
 
72164ba
 
 
 
 
c5ba729
890b9fd
b572397
 
 
890b9fd
b572397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ba729
72164ba
 
 
c5ba729
890b9fd
72164ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b572397
72164ba
 
 
c5ba729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a907317
 
 
 
c5ba729
 
 
 
890b9fd
c5ba729
 
 
 
 
a907317
c5ba729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a907317
 
c5ba729
 
 
 
 
 
 
 
 
 
 
 
72164ba
 
 
c5ba729
890b9fd
c5ba729
72164ba
c5ba729
890b9fd
72164ba
 
890b9fd
72164ba
 
 
 
 
c5ba729
72164ba
c5ba729
72164ba
c5ba729
72164ba
c5ba729
72164ba
 
 
 
 
c5ba729
72164ba
c5ba729
72164ba
c5ba729
72164ba
 
 
 
 
c5ba729
 
890b9fd
c5ba729
 
 
72164ba
 
 
 
 
c5ba729
72164ba
 
 
c5ba729
 
72164ba
 
 
 
c5ba729
 
 
 
72164ba
 
c5ba729
b572397
 
 
 
890b9fd
 
 
 
 
 
 
72164ba
c5ba729
72164ba
 
 
 
 
 
c5ba729
72164ba
 
 
 
 
 
c5ba729
72164ba
 
 
 
 
c5ba729
72164ba
c5ba729
 
72164ba
 
c5ba729
72164ba
 
 
 
 
 
c5ba729
72164ba
 
 
 
 
 
c5ba729
72164ba
 
 
 
 
c5ba729
72164ba
c5ba729
 
 
72164ba
 
c5ba729
72164ba
 
 
 
 
 
c5ba729
72164ba
 
 
 
 
 
c5ba729
72164ba
 
 
 
 
 
c5ba729
 
 
 
 
 
 
 
 
72164ba
 
c5ba729
72164ba
c5ba729
72164ba
c5ba729
 
72164ba
 
c5ba729
72164ba
c5ba729
72164ba
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ba729
890b9fd
72164ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b572397
72164ba
 
 
 
 
b572397
 
 
 
 
 
 
 
 
890b9fd
b572397
 
 
 
 
72164ba
 
 
c5ba729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72164ba
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

import os
import random
import numpy as np
import gradio as gr
import base64
from io import BytesIO
import PIL.Image
from typing import Tuple
from novita_client import NovitaClient, V3TaskResponseStatus
from time import sleep

from style_template import styles



# global variable
MAX_SEED = np.iinfo(np.int32).max
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = 'Watercolor'
DEFAULT_MODEL_NAME = 'sdxlUnstableDiffusers_v8HEAVENSWRATH_133813'
enable_lcm_arg = False

# Path to InstantID models
face_adapter = f'./checkpoints/ip-adapter.bin'
controlnet_path = f'./checkpoints/ControlNetModel'

# controlnet-pose/canny/depth
controlnet_pose_model = 'thibaud/controlnet-openpose-sdxl-1.0'
controlnet_canny_model = 'diffusers/controlnet-canny-sdxl-1.0'
controlnet_depth_model = 'diffusers/controlnet-depth-sdxl-1.0-small'

SDXL_MODELS = [
	"albedobaseXL_v04_130099",
	"altxl_v60_146691",
	"animeArtDiffusionXL_alpha2_91872",
	"animeArtDiffusionXL_alpha3_93120",
	"animeIllustDiffusion_v04_117809",
	"animagineXLV3_v30_231047",
	"breakdomainxl_V05g_124265",
	"brixlAMustInYour_v40Dagobah_145992",
	"cinemaxAlphaSDXLCinema_alpha1_107473",
	"cineroXLPhotomatic_v12aPHENO_137703",
	"clearhungAnimeXL_v10_117716",
	"copaxTimelessxlSDXL1_colorfulV2_100729",
	"counterfeitxl__98184",
	"counterfeitxl_v10_108721",
	"crystalClearXL_ccxl_97637",
	"dreamshaperXL09Alpha_alpha2Xl10_91562",
	"dynavisionXLAllInOneStylized_alpha036FP16Bakedvae_99980",
	"dynavisionXLAllInOneStylized_beta0411Bakedvae_109970",
	"dynavisionXLAllInOneStylized_release0534bakedvae_129001",
	"fenrisxl_145_134980",
	"foddaxlPhotorealism_v45_122788",
	"formulaxl_v10_104889",
	"juggernautXL_version2_113240",
	"juggernautXL_version5_126522",
	"juggernautXL_v8Rundiffusion_227002",
	"kohakuXL_alpha7_111843",
	"LahMysteriousSDXL_v40_122478",
	"leosamsHelloworldSDXLModel_helloworldSDXL10_112178",
	"leosamsHelloworldSDXL_helloworldSDXL50_268813",
	"mbbxlUltimate_v10RC_94686",
	"moefusionSDXL_v10_114018",
	"nightvisionXLPhotorealisticPortrait_beta0681Bakedvae_108833",
	"nightvisionXLPhotorealisticPortrait_beta0702Bakedvae_113098",
	"nightvisionXLPhotorealisticPortrait_release0770Bakedvae_154525",
	"novaPrimeXL_v10_107899",
	"pixelwave_v10_117722",
	"protovisionXLHighFidelity3D_beta0520Bakedvae_106612",
	"protovisionXLHighFidelity3D_release0620Bakedvae_131308",
	"protovisionXLHighFidelity3D_release0630Bakedvae_154359",
	"realismEngineSDXL_v05b_131513",
	"realismEngineSDXL_v10_136287",
	"realisticStockPhoto_v10_115618",
	"RealitiesEdgeXL_4_122673",
	"realvisxlV20_v20Bakedvae_129156",
	"riotDiffusionXL_v20_139293",
	"roxl_v10_109354",
	"sd_xl_base_0.9",
	"sd_xl_base_1.0",
	"sdxlNijiSpecial_sdxlNijiSE_115638",
	"sdxlNijiV3_sdxlNijiV3_104571",
	"sdxlNijiV51_sdxlNijiV51_112807",
	"sd_xl_refiner_1.0",
	"sdxlUnstableDiffusers_v8HEAVENSWRATH_133813",
	"sdXL_v10Refiner_91495",
	"sdxlYamersAnimeUltra_yamersAnimeV3_121537",
	"shikianimexl_v10_93788",
	#"stable-diffusion-xl-base-1.0",
	"theTalosProject_v10_117893",
	"thinkdiffusionxl_v10_145931",
	"protovisionXLHighFidelity3D_releaseV660Bakedvae_207131",
	"voidnoisecorexl_r1486_150780",
	"wlopArienwlopstylexl_v10_101973",
	"wlopSTYLEXL_v2_126171",
	"xl13AsmodeusSFWNSFW_v22BakedVAE_111954",
	"xxmix9realisticsdxl_v10_123235",
	"zavychromaxl_b2_103298",
	"zavychromaxl_v21_129006",
]

CONTROLNET_DICT = dict(
	pose={
		'model_name': 'controlnet-openpose-sdxl-1.0',
		'strength': 1,
		'preprocessor': 'openpose',
	},
	depth={
		'model_name': 'controlnet-depth-sdxl-1.0',
		'strength': 1,
		'preprocessor': 'depth',
	},
	canny={
		'model_name': 'controlnet-canny-sdxl-1.0',
		'strength': 1,
		'preprocessor': 'canny',
	},
)



def get_novita_client (novita_key):
	client = NovitaClient(novita_key, os.getenv('NOVITA_API_URI', None))
	return client


get_local_storage = '''
	function () {
		globalThis.setStorage = (key, value)=>{
			localStorage.setItem(key, JSON.stringify(value))
		}
		globalThis.getStorage = (key, value)=>{
			return JSON.parse(localStorage.getItem(key))
		}

		const novita_key = getStorage("novita_key")
		return [novita_key];
	}
'''


def toggle_lcm_ui (value):
	if value:
		return (
			gr.update(minimum=0, maximum=100, step=1, value=5),
			gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5),
		)
	else:
		return (
			gr.update(minimum=5, maximum=100, step=1, value=30),
			gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5),
		)


def randomize_seed_fn (seed: int, randomize_seed: bool) -> int:
	if randomize_seed:
		seed = random.randint(0, MAX_SEED)
	return seed


def remove_tips ():
	return gr.update(visible=False)


def apply_style (style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
	p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
	return p.replace("{prompt}", positive), n + " " + negative


def get_example ():
	case = [
		[
			'./examples/yann-lecun_resize.jpg',
			'./examples/poses/pose.jpg',
			'a man',
			'Spring Festival',
			'(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green',
		],
		[
			'./examples/musk_resize.jpeg',
			'./examples/poses/pose2.jpg',
			'a man flying in the sky in Mars',
			'Mars',
			'(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green',
		],
		[
			'./examples/sam_resize.png',
			'./examples/poses/pose4.jpg',
			'a man doing a silly pose wearing a suite',
			'Jungle',
			'(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree',
		],
		[
			'./examples/schmidhuber_resize.png',
			'./examples/poses/pose3.jpg',
			'a man sit on a chair',
			'Neon',
			'(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green',
		],
		[
			'./examples/kaifu_resize.png',
			'./examples/poses/pose.jpg',
			'a man',
			'Vibrant Color',
			'(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green',
		],
	]
	return case


def run_for_examples_with_key (novita_key):
	def run_for_examples (model_name, face_file, pose_file, prompt, style, negative_prompt):
		print('run_for_examples:', novita_key, face_file)
		#return generate_image(
		#	novita_key,
		#	model_name,
		#	face_file,
		#	pose_file,
		#	prompt,
		#	negative_prompt,
		#	style,
		#	20,		# num_steps
		#	0.8,	# identitynet_strength_ratio
		#	0.8,	# adapter_strength_ratio
		#	0.4,	# pose_strength
		#	0.3,	# canny_strength
		#	0.5,	# depth_strength
		#	['pose', 'canny'],	# controlnet_selection
		#	5.0,	# guidance_scale
		#	42,		# seed
		#	'Euler a',	# scheduler
		#	#False,	# enable_LCM
		#	True,	# enable_Face_Region
		#)
		return None, gr.update(visible=True)
	return run_for_examples


def generate_image (
	novita_key1,
	model_name,
	face_image_path,
	pose_image_path,
	prompt,
	negative_prompt,
	style_name,
	num_steps,
	identitynet_strength_ratio,
	adapter_strength_ratio,
	pose_strength,
	canny_strength,
	depth_strength,
	controlnet_selection,
	guidance_scale,
	seed,
	scheduler,
	#enable_LCM,
	enhance_face_region,
	progress=gr.Progress(track_tqdm=True),
):
	if face_image_path is None:
		raise gr.Error(f'Cannot find any input face image! Please refer to step 1️⃣')

	#print('novita_key:', novita_key1)
	print('face_image_path:', face_image_path)
	if not novita_key1:
		raise gr.Error(f'Please input your Novita Key!')
	try:
		client = get_novita_client(novita_key1)
		prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
		#print('prompt:', prompt)
		#print('negative_prompt:', negative_prompt)
		#print('seed:', seed)
		#print('identitynet_strength_ratio:', identitynet_strength_ratio)
		#print('adapter_strength_ratio:', adapter_strength_ratio)
		#print('scheduler:', scheduler)
		#print('guidance_scale:', guidance_scale)
		#print('num_steps:', num_steps)

		ref_image_path = pose_image_path if pose_image_path else face_image_path
		ref_image = PIL.Image.open(ref_image_path)
		width, height = ref_image.size

		CONTROLNET_DICT['pose']['strength'] = pose_strength
		CONTROLNET_DICT['canny']['strength'] = canny_strength
		CONTROLNET_DICT['depth']['strength'] = depth_strength

		res = client._post('/v3/async/instant-id', {
			'extra': {
				'response_image_type': 'jpeg',
			},
			'model_name': f'{model_name}.safetensors',
			'face_image_assets_ids': client.upload_assets([face_image_path]),
			'ref_image_assets_ids': client.upload_assets([pose_image_path]) if pose_image_path else [],
			'prompt': prompt,
			'negative_prompt': negative_prompt,
			'controlnet': {
				'units': [CONTROLNET_DICT[name] for name in controlnet_selection if name in CONTROLNET_DICT],
			},
			'image_num': 1,
			'steps': num_steps,
			'seed': seed,
			'guidance_scale': guidance_scale,
			'sampler_name': scheduler,
			'id_strength': identitynet_strength_ratio,
			'adapter_strength': adapter_strength_ratio,
			'width': width,
			'height': height,
		})

		print('task_id:', res['task_id'])
		def progress (x):
			print('progress:', x.task.status)
		final_res = client.wait_for_task_v3(res['task_id'], callback=progress)
		if final_res is None or final_res.task.status == V3TaskResponseStatus.TASK_STATUS_FAILED:
			raise RuntimeError(f'Novita task failed: {final_res and final_res.task.status}')
		print('status:', final_res.task.status)

		final_res.download_images()
	except Exception as e:
		raise gr.Error(f'Error: {e}')

	#print('final_res:', final_res)
	#print('final_res.images_encoded:', final_res.images_encoded)

	image = PIL.Image.open(BytesIO(base64.b64decode(final_res.images_encoded[0])))

	return image, gr.update(visible=True)


# Description
title = r'''
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds (via Novita)</h1>
'''

description = r'''
<a href='https://github.com/InstantID/InstantID' target="_blank"><b>InstantID</b></a> demo via <a href="https://novita.ai/" target="_blank"><b>Novita API</b></a>.<br>

How to use:<br>
0. Input your <a href="https://novita.ai/dashboard/key" target="_blank"><b>Novita API Key</b></a>.
1. Upload an image with a face. For images with multiple faces, we will only detect the largest face. Ensure the face is not too small and is clearly visible without significant obstructions or blurring.
2. (Optional) You can upload another image as a reference for the face pose. If you don't, we will use the first detected face image to extract facial landmarks. If you use a cropped face at step 1, it is recommended to upload it to define a new face pose.
3. (Optional) You can select multiple ControlNet models to control the generation process. The default is to use the IdentityNet only. The ControlNet models include pose skeleton, canny, and depth. You can adjust the strength of each ControlNet model to control the generation process.
4. Enter a text prompt, as done in normal text-to-image models.
5. Click the <b>Submit</b> button to begin customization.
6. Share your customized photo with your friends and enjoy! 😊'''

article = r'''
---
'''

tips = r'''
### Usage tips of InstantID
1. If you're not satisfied with the similarity, try increasing the weight of "IdentityNet Strength" and "Adapter Strength."	
2. If you feel that the saturation is too high, first decrease the Adapter strength. If it remains too high, then decrease the IdentityNet strength.
3. If you find that text control is not as expected, decrease Adapter strength.
4. If you find that realistic style is not good enough, go for our Github repo and use a more realistic base model.
'''

css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
	# description
	gr.Markdown(title)
	gr.Markdown(description)

	with gr.Row():
		with gr.Column(scale=1):
			novita_key = gr.Textbox(value='', label='Novita.AI API KEY', placeholder='novita.ai api key', type='password')
		with gr.Column(scale=1):
			user_balance = gr.Textbox(label='User Balance', value='0.0')

	with gr.Row():
		with gr.Column():
			with gr.Row(equal_height=True):
				# upload face image
				face_file = gr.Image(
					label='Upload a photo of your face', type='filepath'
				)
				# optional: upload a reference pose image
				pose_file = gr.Image(
					label='Upload a reference pose image (Optional)',
					type='filepath',
				)

			# prompt
			prompt = gr.Textbox(
				label='Prompt',
				info='Give simple prompt is enough to achieve good face fidelity',
				placeholder='A photo of a person',
				value='',
			)

			submit = gr.Button('Submit', variant='primary')
			#enable_LCM = gr.Checkbox(
			#	label='Enable Fast Inference with LCM', value=enable_lcm_arg,
			#	info='LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces',
			#)

			model_name = gr.Dropdown(
				label='Base model',
				choices=SDXL_MODELS,
				value=DEFAULT_MODEL_NAME,
			)

			style = gr.Dropdown(
				label='Style template',
				choices=STYLE_NAMES,
				value=DEFAULT_STYLE_NAME,
			)

			# strength
			identitynet_strength_ratio = gr.Slider(
				label='IdentityNet strength (for fidelity)',
				minimum=0,
				maximum=1.5,
				step=0.05,
				value=0.80,
			)
			adapter_strength_ratio = gr.Slider(
				label='Image adapter strength (for detail)',
				minimum=0,
				maximum=1.5,
				step=0.05,
				value=0.80,
			)
			with gr.Accordion('Controlnet'):
				controlnet_selection = gr.CheckboxGroup(
					['pose', 'canny', 'depth'], label='Controlnet', value=['pose'],
					info='Use pose for skeleton inference, canny for edge detection, and depth for depth map estimation. You can try all three to control the generation process'
				)
				pose_strength = gr.Slider(
					label='Pose strength',
					minimum=0,
					maximum=1.5,
					step=0.05,
					value=0.40,
				)
				canny_strength = gr.Slider(
					label='Canny strength',
					minimum=0,
					maximum=1.5,
					step=0.05,
					value=0.40,
				)
				depth_strength = gr.Slider(
					label='Depth strength',
					minimum=0,
					maximum=1.5,
					step=0.05,
					value=0.40,
				)
			with gr.Accordion(open=False, label='Advanced Options'):
				negative_prompt = gr.Textbox(
					label='Negative Prompt',
					placeholder='low quality',
					value='(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green',
				)
				num_steps = gr.Slider(
					label='Number of sample steps',
					minimum=1,
					maximum=100,
					step=1,
					value=5 if enable_lcm_arg else 30,
				)
				guidance_scale = gr.Slider(
					label='Guidance scale',
					minimum=0.1,
					maximum=20.0,
					step=0.1,
					value=0.0 if enable_lcm_arg else 5.0,
				)
				seed = gr.Slider(
					label='Seed',
					minimum=0,
					maximum=MAX_SEED,
					step=1,
					value=42,
				)
				schedulers = [
					'Euler',
					'Euler a',
					'Heun',
					'DPM++ SDE',
					'DPM++ SDE Karras',
					'DPM2',
					'DPM2 Karras',
					'DPM2 a',
					'DPM2 a Karras',
				]
				scheduler = gr.Dropdown(
					label='Schedulers',
					choices=schedulers,
					value='Euler a',
				)
				randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
				enhance_face_region = gr.Checkbox(label='Enhance non-face region', value=True)

		with gr.Column(scale=1):
			gallery = gr.Image(label='Generated Images')
			usage_tips = gr.Markdown(
				label='InstantID Usage Tips', value=tips, visible=False
			)

		submit.click(
			fn=remove_tips,
			outputs=usage_tips,
		).then(
			fn=randomize_seed_fn,
			inputs=[seed, randomize_seed],
			outputs=seed,
			queue=False,
			api_name=False,
		).then(
			fn=generate_image,
			inputs=[
				novita_key,
				model_name,
				face_file,
				pose_file,
				prompt,
				negative_prompt,
				style,
				num_steps,
				identitynet_strength_ratio,
				adapter_strength_ratio,
				pose_strength,
				canny_strength,
				depth_strength,
				controlnet_selection,
				guidance_scale,
				seed,
				scheduler,
				#enable_LCM,
				enhance_face_region,
			],
			outputs=[gallery, usage_tips],
		)

		#enable_LCM.input(
		#	fn=toggle_lcm_ui,
		#	inputs=[enable_LCM],
		#	outputs=[num_steps, guidance_scale],
		#	queue=False,
		#)

	#gr.Examples(
	#	examples=get_example(),
	#	inputs=[model_name, face_file, pose_file, prompt, style, negative_prompt],
	#	fn=run_for_examples_with_key(novita_key),
	#	run_on_click=True,
	#	outputs=[gallery, usage_tips],
	#	cache_examples=True,
	#)

	gr.Markdown(article)

	def onload(novita_key):
		if novita_key is None or novita_key == '':
			return novita_key, f'$ UNKNOWN', gr.update(visible=False)
		try:
			user_info_json = get_novita_client(novita_key).user_info()
		except Exception as e:
			return novita_key, f'$ UNKNOWN'

		return novita_key, f'$ {user_info_json.credit_balance / 100 / 100:.2f}'

	novita_key.change(onload, inputs=novita_key, outputs=[novita_key, user_balance], js='v=>{ setStorage("novita_key", v); return [v]; }')

	demo.load(
		inputs=[novita_key],
		outputs=[novita_key, user_balance],
		fn=onload,
		js=get_local_storage,
	)


demo.queue(api_open=False)
demo.launch()