Spaces:
Runtime error
Runtime error
import os | |
from typing import List | |
import torch | |
from typing import Optional, Union, Any, Dict, Tuple, List, Callable | |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
deprecate, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.pipelines.controlnet.pipeline_controlnet import retrieve_timesteps | |
from diffusers import StableDiffusionPipeline | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline | |
from diffusers.models.controlnet import ControlNetModel | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.pipelines.controlnet import MultiControlNetModel | |
from PIL import Image | |
from safetensors import safe_open | |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
from torchvision import transforms | |
from .style_encoder import Style_Aware_Encoder | |
from .tools import pre_processing | |
from .utils import is_torch2_available | |
if is_torch2_available(): | |
from .attention_processor import ( | |
AttnProcessor2_0 as AttnProcessor, | |
) | |
from .attention_processor import ( | |
CNAttnProcessor2_0 as CNAttnProcessor, | |
) | |
from .attention_processor import ( | |
IPAttnProcessor2_0 as IPAttnProcessor, | |
) | |
else: | |
from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor | |
from .resampler import Resampler | |
class ImageProjModel(torch.nn.Module): | |
"""Projection Model""" | |
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): | |
super().__init__() | |
self.cross_attention_dim = cross_attention_dim | |
self.clip_extra_context_tokens = clip_extra_context_tokens | |
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
def forward(self, image_embeds): | |
embeds = image_embeds | |
clip_extra_context_tokens = self.proj(embeds).reshape( | |
-1, self.clip_extra_context_tokens, self.cross_attention_dim | |
) | |
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) | |
return clip_extra_context_tokens | |
class MLPProjModel(torch.nn.Module): | |
"""SD model with image prompt""" | |
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024): | |
super().__init__() | |
self.proj = torch.nn.Sequential( | |
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim), | |
torch.nn.GELU(), | |
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim), | |
torch.nn.LayerNorm(cross_attention_dim) | |
) | |
def forward(self, image_embeds): | |
clip_extra_context_tokens = self.proj(image_embeds) | |
return clip_extra_context_tokens | |
class IPAdapter: | |
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4): | |
self.device = device | |
self.image_encoder_path = image_encoder_path | |
self.ip_ckpt = ip_ckpt | |
self.num_tokens = num_tokens | |
self.pipe = sd_pipe.to(self.device) | |
self.set_ip_adapter() | |
# load image encoder | |
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( | |
self.device, dtype=torch.float16 | |
) | |
self.clip_image_processor = CLIPImageProcessor() | |
# image proj model | |
self.image_proj_model = self.init_proj() | |
self.load_ip_adapter() | |
def init_proj(self): | |
image_proj_model = ImageProjModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
clip_embeddings_dim=self.image_encoder.config.projection_dim, | |
clip_extra_context_tokens=self.num_tokens, | |
).to(self.device, dtype=torch.float16) | |
return image_proj_model | |
def set_ip_adapter(self): | |
unet = self.pipe.unet | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = AttnProcessor() | |
else: | |
attn_procs[name] = IPAttnProcessor( | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
scale=1.0, | |
num_tokens=self.num_tokens, | |
).to(self.device, dtype=torch.float16) | |
unet.set_attn_processor(attn_procs) | |
if hasattr(self.pipe, "controlnet"): | |
if isinstance(self.pipe.controlnet, MultiControlNetModel): | |
for controlnet in self.pipe.controlnet.nets: | |
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) | |
else: | |
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) | |
def load_ip_adapter(self): | |
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": | |
state_dict = {"image_proj": {}, "ip_adapter": {}} | |
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
if key.startswith("image_proj."): | |
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
elif key.startswith("ip_adapter."): | |
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
else: | |
state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
ip_layers.load_state_dict(state_dict["ip_adapter"]) | |
def get_image_embeds(self, pil_image=None, clip_image_embeds=None): | |
if pil_image is not None: | |
if isinstance(pil_image, Image.Image): | |
pil_image = [pil_image] | |
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values | |
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds | |
else: | |
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16) | |
image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds)) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |
def set_scale(self, scale): | |
for attn_processor in self.pipe.unet.attn_processors.values(): | |
if isinstance(attn_processor, IPAttnProcessor): | |
attn_processor.scale = scale | |
def generate( | |
self, | |
pil_image=None, | |
clip_image_embeds=None, | |
prompt=None, | |
negative_prompt=None, | |
scale=1.0, | |
num_samples=4, | |
seed=None, | |
guidance_scale=7.5, | |
num_inference_steps=30, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
if pil_image is not None: | |
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
else: | |
num_prompts = clip_image_embeds.size(0) | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( | |
pil_image=pil_image, clip_image_embeds=clip_image_embeds | |
) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
prompt, | |
device=self.device, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images | |
return images | |
class IPAdapterXL(IPAdapter): | |
"""SDXL""" | |
def generate( | |
self, | |
pil_image, | |
prompt=None, | |
negative_prompt=None, | |
scale=1.0, | |
num_samples=4, | |
seed=None, | |
num_inference_steps=30, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.pipe.encode_prompt( | |
prompt, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images | |
return images | |
class IPAdapterPlus(IPAdapter): | |
"""IP-Adapter with fine-grained features""" | |
def init_proj(self): | |
image_proj_model = Resampler( | |
dim=self.pipe.unet.config.cross_attention_dim, | |
depth=4, | |
dim_head=64, | |
heads=12, | |
num_queries=self.num_tokens, | |
embedding_dim=self.image_encoder.config.hidden_size, | |
output_dim=self.pipe.unet.config.cross_attention_dim, | |
ff_mult=4, | |
).to(self.device, dtype=torch.float16) | |
return image_proj_model | |
def get_image_embeds(self, pil_image=None, clip_image_embeds=None): | |
if isinstance(pil_image, Image.Image): | |
pil_image = [pil_image] | |
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values | |
clip_image = clip_image.to(self.device, dtype=torch.float16) | |
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] | |
image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
uncond_clip_image_embeds = self.image_encoder( | |
torch.zeros_like(clip_image), output_hidden_states=True | |
).hidden_states[-2] | |
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |
class IPAdapterFull(IPAdapterPlus): | |
"""IP-Adapter with full features""" | |
def init_proj(self): | |
image_proj_model = MLPProjModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
clip_embeddings_dim=self.image_encoder.config.hidden_size, | |
).to(self.device, dtype=torch.float16) | |
return image_proj_model | |
class IPAdapterPlusXL(IPAdapter): | |
"""SDXL""" | |
def init_proj(self): | |
image_proj_model = Resampler( | |
dim=1280, | |
depth=4, | |
dim_head=64, | |
heads=20, | |
num_queries=self.num_tokens, | |
embedding_dim=self.image_encoder.config.hidden_size, | |
output_dim=self.pipe.unet.config.cross_attention_dim, | |
ff_mult=4, | |
).to(self.device, dtype=torch.float16) | |
return image_proj_model | |
def get_image_embeds(self, pil_image): | |
if isinstance(pil_image, Image.Image): | |
pil_image = [pil_image] | |
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values | |
clip_image = clip_image.to(self.device, dtype=torch.float16) | |
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] | |
image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
uncond_clip_image_embeds = self.image_encoder( | |
torch.zeros_like(clip_image), output_hidden_states=True | |
).hidden_states[-2] | |
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |
def generate( | |
self, | |
pil_image, | |
prompt=None, | |
negative_prompt=None, | |
scale=1.0, | |
num_samples=4, | |
seed=None, | |
num_inference_steps=30, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.pipe.encode_prompt( | |
prompt, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images | |
return images | |
def StyleProcessor(style_image, device): | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
]) | |
# centercrop for style condition | |
crop = transforms.Compose( | |
[ | |
transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop(512), | |
] | |
) | |
style_image = crop(style_image) | |
high_style_patch, middle_style_patch, low_style_patch = pre_processing(style_image.convert("RGB"), transform) | |
# shuffling | |
high_style_patch, middle_style_patch, low_style_patch = (high_style_patch[torch.randperm(high_style_patch.shape[0])], | |
middle_style_patch[torch.randperm(middle_style_patch.shape[0])], | |
low_style_patch[torch.randperm(low_style_patch.shape[0])]) | |
return (high_style_patch.to(device, dtype=torch.float32), middle_style_patch.to(device, dtype=torch.float32), low_style_patch.to(device, dtype=torch.float32)) | |
class StyleShot(torch.nn.Module): | |
"""StyleShot generation""" | |
def __init__(self, device, pipe, ip_ckpt, style_aware_encoder_ckpt, transformer_patch): | |
super().__init__() | |
self.num_tokens = 6 | |
self.device = device | |
self.pipe = pipe | |
self.set_ip_adapter(device) | |
self.ip_ckpt = ip_ckpt | |
self.style_aware_encoder = Style_Aware_Encoder(CLIPVisionModelWithProjection.from_pretrained(transformer_patch)).to(self.device, dtype=torch.float32) | |
self.style_aware_encoder.load_state_dict(torch.load(style_aware_encoder_ckpt)) | |
self.style_image_proj_modules = self.init_proj() | |
self.load_ip_adapter() | |
self.pipe = self.pipe.to(self.device, dtype=torch.float32) | |
def init_proj(self): | |
style_image_proj_modules = torch.nn.ModuleList([ | |
ImageProjModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
clip_embeddings_dim=self.style_aware_encoder.projection_dim, | |
clip_extra_context_tokens=2, | |
), | |
ImageProjModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
clip_embeddings_dim=self.style_aware_encoder.projection_dim, | |
clip_extra_context_tokens=2, | |
), | |
ImageProjModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
clip_embeddings_dim=self.style_aware_encoder.projection_dim, | |
clip_extra_context_tokens=2, | |
)]) | |
return style_image_proj_modules.to(self.device, dtype=torch.float32) | |
def load_ip_adapter(self): | |
sd = torch.load(self.ip_ckpt, map_location="cpu") | |
style_image_proj_sd = {} | |
ip_sd = {} | |
controlnet_sd = {} | |
for k in sd: | |
if k.startswith("unet"): | |
pass | |
elif k.startswith("style_image_proj_modules"): | |
style_image_proj_sd[k.replace("style_image_proj_modules.", "")] = sd[k] | |
elif k.startswith("adapter_modules"): | |
ip_sd[k.replace("adapter_modules.", "")] = sd[k] | |
elif k.startswith("controlnet"): | |
controlnet_sd[k.replace("controlnet.", "")] = sd[k] | |
# Load state dict for image_proj_model and adapter_modules | |
self.style_image_proj_modules.load_state_dict(style_image_proj_sd, strict=True) | |
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
if hasattr(self.pipe, "controlnet") and isinstance(self.pipe, StyleContentStableDiffusionControlNetPipeline): | |
self.pipe.controlnet.load_state_dict(controlnet_sd, strict=True) | |
ip_layers.load_state_dict(ip_sd, strict=True) | |
def set_ip_adapter(self, device): | |
unet = self.pipe.unet | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = AttnProcessor() | |
else: | |
attn_procs[name] = IPAttnProcessor( | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
scale=1.0, | |
num_tokens=self.num_tokens, | |
).to(device, dtype=torch.float16) | |
if hasattr(self.pipe, "controlnet") and not isinstance(self.pipe, StyleContentStableDiffusionControlNetPipeline): | |
if isinstance(self.pipe.controlnet, MultiControlNetModel): | |
for controlnet in self.pipe.controlnet.nets: | |
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) | |
else: | |
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) | |
unet.set_attn_processor(attn_procs) | |
def get_image_embeds(self, style_image=None): | |
style_image = StyleProcessor(style_image, self.device) | |
style_embeds = self.style_aware_encoder(style_image).to(self.device, dtype=torch.float32) | |
style_ip_tokens = [] | |
uncond_style_ip_tokens = [] | |
for idx, style_embed in enumerate([style_embeds[:, 0, :], style_embeds[:, 1, :], style_embeds[:, 2, :]]): | |
style_ip_tokens.append(self.style_image_proj_modules[idx](style_embed)) | |
uncond_style_ip_tokens.append(self.style_image_proj_modules[idx](torch.zeros_like(style_embed))) | |
style_ip_tokens = torch.cat(style_ip_tokens, dim=1) | |
uncond_style_ip_tokens = torch.cat(uncond_style_ip_tokens, dim=1) | |
return style_ip_tokens, uncond_style_ip_tokens | |
def set_scale(self, scale): | |
for attn_processor in self.pipe.unet.attn_processors.values(): | |
if isinstance(attn_processor, IPAttnProcessor): | |
attn_processor.scale = scale | |
def samples(self, image_prompt_embeds, uncond_image_prompt_embeds, num_samples, device, prompt, negative_prompt, | |
seed, guidance_scale, num_inference_steps, content_image, **kwargs, ): | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
prompt, | |
device=device, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None | |
if content_image is None: | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images | |
else: | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
image=content_image, | |
style_embeddings=image_prompt_embeds, | |
negative_style_embeddings=uncond_image_prompt_embeds, | |
**kwargs, | |
).images | |
return images | |
def generate( | |
self, | |
style_image=None, | |
prompt=None, | |
negative_prompt=None, | |
scale=1.0, | |
num_samples=1, | |
seed=42, | |
guidance_scale=7.5, | |
num_inference_steps=50, | |
content_image=None, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
num_prompts = 1 | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
style_ip_tokens, uncond_style_ip_tokens = self.get_image_embeds(style_image) | |
generate_images = [] | |
for p in prompt: | |
images = self.samples(style_ip_tokens, uncond_style_ip_tokens, num_samples, self.device, p * num_prompts, negative_prompt, seed, guidance_scale, num_inference_steps, content_image, **kwargs, ) | |
generate_images.append(images) | |
return generate_images | |
class StyleContentStableDiffusionControlNetPipeline(StableDiffusionControlNetPipeline): | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
image: PipelineImageInput = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
timesteps: List[int] = None, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
guess_mode: bool = False, | |
control_guidance_start: Union[float, List[float]] = 0.0, | |
control_guidance_end: Union[float, List[float]] = 1.0, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
style_embeddings: Optional[torch.FloatTensor] = None, | |
negative_style_embeddings: Optional[torch.FloatTensor] = None, | |
**kwargs, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | |
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | |
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | |
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be | |
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height | |
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in | |
`init`, images must be passed as a list such that each element of the list can be correctly batched for | |
input to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single ControlNet, | |
each will be paired with each prompt in the `prompt` list. This also applies to multiple ControlNets, | |
where a list of image lists can be passed to batch for each prompt and each ControlNet. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): | |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. | |
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding | |
if `do_classifier_free_guidance` is set to `True`. | |
If not provided, embeddings are computed from the `ip_adapter_image` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added | |
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set | |
the corresponding scale as a list. | |
guess_mode (`bool`, *optional*, defaults to `False`): | |
The ControlNet encoder tries to recognize the content of the input image even if you remove all | |
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. | |
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): | |
The percentage of total steps at which the ControlNet starts applying. | |
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The percentage of total steps at which the ControlNet stops applying. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeine class. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | |
# align format for control guidance | |
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | |
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 | |
control_guidance_start, control_guidance_end = ( | |
mult * [control_guidance_start], | |
mult * [control_guidance_end], | |
) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
image, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
controlnet_conditioning_scale, | |
control_guidance_start, | |
control_guidance_end, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | |
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) | |
global_pool_conditions = ( | |
controlnet.config.global_pool_conditions | |
if isinstance(controlnet, ControlNetModel) | |
else controlnet.nets[0].config.global_pool_conditions | |
) | |
guess_mode = guess_mode or global_pool_conditions | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
# 4. Prepare image | |
if isinstance(controlnet, ControlNetModel): | |
image = self.prepare_image( | |
image=image, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
height, width = image.shape[-2:] | |
elif isinstance(controlnet, MultiControlNetModel): | |
images = [] | |
# Nested lists as ControlNet condition | |
if isinstance(image[0], list): | |
# Transpose the nested image list | |
image = [list(t) for t in zip(*image)] | |
for image_ in image: | |
image_ = self.prepare_image( | |
image=image_, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
images.append(image_) | |
image = images | |
height, width = image[0].shape[-2:] | |
else: | |
assert False | |
# 5. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
self._num_timesteps = len(timesteps) | |
# 6. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6.5 Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7.1 Add image embeds for IP-Adapter | |
added_cond_kwargs = ( | |
{"image_embeds": image_embeds} | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None | |
else None | |
) | |
# 7.2 Create tensor stating which controlnets to keep | |
controlnet_keep = [] | |
for i in range(len(timesteps)): | |
keeps = [ | |
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
for s, e in zip(control_guidance_start, control_guidance_end) | |
] | |
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
is_unet_compiled = is_compiled_module(self.unet) | |
is_controlnet_compiled = is_compiled_module(self.controlnet) | |
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# Relevant thread: | |
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 | |
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: | |
torch._inductor.cudagraph_mark_step_begin() | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# controlnet(s) inference | |
if guess_mode and self.do_classifier_free_guidance: | |
# Infer ControlNet only for the conditional batch. | |
control_model_input = latents | |
control_model_input = self.scheduler.scale_model_input(control_model_input, t) | |
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
else: | |
control_model_input = latent_model_input | |
controlnet_prompt_embeds = prompt_embeds | |
if isinstance(controlnet_keep[i], list): | |
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | |
else: | |
controlnet_cond_scale = controlnet_conditioning_scale | |
if isinstance(controlnet_cond_scale, list): | |
controlnet_cond_scale = controlnet_cond_scale[0] | |
cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
if self.do_classifier_free_guidance: | |
style_embeddings_input = torch.cat([negative_style_embeddings, style_embeddings]) | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
control_model_input, | |
t, | |
encoder_hidden_states=style_embeddings_input, | |
controlnet_cond=image, | |
conditioning_scale=cond_scale, | |
guess_mode=guess_mode, | |
return_dict=False, | |
) | |
if guess_mode and self.do_classifier_free_guidance: | |
# Infered ControlNet only for the conditional batch. | |
# To apply the output of ControlNet to both the unconditional and conditional batches, | |
# add 0 to the unconditional batch to keep it unchanged. | |
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | |
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# If we do sequential model offloading, let's offload unet and controlnet | |
# manually for max memory savings | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.unet.to("cpu") | |
self.controlnet.to("cpu") | |
torch.cuda.empty_cache() | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ | |
0 | |
] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |