Spaces:
Runtime error
Runtime error
please work
Browse filesplease please please
train.py
CHANGED
@@ -1,331 +1,66 @@
|
|
1 |
-
import os
|
2 |
-
from sys import exit
|
3 |
import torch
|
4 |
-
import
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
)
|
9 |
-
from datasets import load_dataset, Dataset
|
10 |
-
from tokenizers import ByteLevelBPETokenizer
|
11 |
-
from huggingface_hub import HfApi
|
12 |
-
from trl import SFTConfig, SFTTrainer
|
13 |
-
from torch.utils.data import DataLoader
|
14 |
-
from itertools import islice
|
15 |
-
|
16 |
-
class Config:
|
17 |
-
def __init__(self):
|
18 |
-
# Model and training hyperparameters
|
19 |
-
self.BATCH_SIZE = 16
|
20 |
-
self.EPOCHS = 3
|
21 |
-
self.LEARNING_RATE = 2e-4
|
22 |
-
self.MAX_SEQ_LENGTH = 512
|
23 |
-
self.VOCAB_SIZE = 32000
|
24 |
-
self.FP16 = True
|
25 |
-
self.WEIGHT_DECAY = 1e-3
|
26 |
-
self.GRADIENT_ACCUMULATION_STEPS = self.BATCH_SIZE // 4
|
27 |
-
|
28 |
-
# Dataset configurations
|
29 |
-
self.INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
|
30 |
-
self.INSTRUCT_DATASET = "nroggendorff/elephant"
|
31 |
-
self.SHARD_SIZE = int(2e+5)
|
32 |
-
|
33 |
-
# Output and repo settings
|
34 |
-
self.OUTPUT_REPO = "nroggendorff/smallama"
|
35 |
-
self.PUSH_TO_HUB = True
|
36 |
-
self.INSTRUCT_FINETUNE_BOOL = False
|
37 |
-
|
38 |
-
# Training steps and warmup
|
39 |
-
self.FACTOR = 12 ** 3 // 2
|
40 |
-
self.TOTAL_STEPS = (self.SHARD_SIZE * self.EPOCHS) // (self.BATCH_SIZE * self.GRADIENT_ACCUMULATION_STEPS)
|
41 |
-
self.WARMUP_STEPS = int(self.TOTAL_STEPS * 0.1)
|
42 |
-
|
43 |
-
# Initial state for shard offset
|
44 |
-
self.INIT = 0
|
45 |
-
|
46 |
-
# ignore
|
47 |
-
self.getConfig = lambda: self._args()
|
48 |
-
|
49 |
-
# @staticmethod
|
50 |
-
def _args(self):
|
51 |
-
return SFTConfig(
|
52 |
-
output_dir="model",
|
53 |
-
num_train_epochs=self.EPOCHS,
|
54 |
-
per_device_train_batch_size=self.BATCH_SIZE,
|
55 |
-
learning_rate=self.LEARNING_RATE,
|
56 |
-
warmup_steps=self.WARMUP_STEPS,
|
57 |
-
weight_decay=self.WEIGHT_DECAY,
|
58 |
-
gradient_accumulation_steps=self.GRADIENT_ACCUMULATION_STEPS,
|
59 |
-
fp16=self.FP16,
|
60 |
-
save_steps=int(self.WARMUP_STEPS * 5),
|
61 |
-
logging_steps=int(self.WARMUP_STEPS),
|
62 |
-
save_total_limit=2,
|
63 |
-
report_to="none",
|
64 |
-
)
|
65 |
|
66 |
config = Config()
|
67 |
|
68 |
-
class Space:
|
69 |
-
def __init__(self):
|
70 |
-
self.api = HfApi()
|
71 |
-
self.pause = lambda: self.api.pause_space("nroggendorff/train-llama")
|
72 |
-
|
73 |
class FineError(Exception):
|
74 |
def __init__(self, message="Script execution has completed."):
|
75 |
self.message = message
|
76 |
super().__init__(self.message)
|
77 |
|
78 |
-
def
|
79 |
-
if
|
80 |
-
|
81 |
-
|
82 |
-
dataset = load_dataset(config.INSTRUCT_DATASET, split="train", streaming=True)
|
83 |
-
|
84 |
-
start = config.INIT * config.SHARD_SIZE
|
85 |
-
data_list = list(islice(dataset, start, start + config.SHARD_SIZE))
|
86 |
-
|
87 |
-
dataset = Dataset.from_dict({'text': [example['text'] for example in data_list]})
|
88 |
-
return dataset
|
89 |
-
|
90 |
-
def encode_decode(texts, tok):
|
91 |
-
if tok.pad_token is None:
|
92 |
-
tok.pad_token = tok.eos_token
|
93 |
-
|
94 |
-
tokenized_texts = tok(
|
95 |
-
texts,
|
96 |
-
padding="max_length",
|
97 |
-
truncation=True,
|
98 |
-
max_length=config.MAX_SEQ_LENGTH,
|
99 |
-
return_tensors="pt"
|
100 |
-
).input_ids
|
101 |
-
|
102 |
-
if tokenized_texts.dim() >= 1:
|
103 |
-
decoded_texts = tok.batch_decode(tokenized_texts)
|
104 |
-
else:
|
105 |
-
print('Found invalid entry in examples. Returning dummy..')
|
106 |
-
decoded_texts = [tok.pad_token * config.MAX_SEQ_LENGTH]
|
107 |
-
|
108 |
-
islist = not len(decoded_texts) == 1
|
109 |
-
|
110 |
-
return decoded_texts if islist else decoded_texts[0]
|
111 |
-
|
112 |
-
def create_tokenizer(training_corpus):
|
113 |
-
tokenizer = ByteLevelBPETokenizer()
|
114 |
-
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
115 |
-
tokenizer.train_from_iterator(
|
116 |
-
training_corpus,
|
117 |
-
vocab_size=config.VOCAB_SIZE,
|
118 |
-
min_frequency=2,
|
119 |
-
special_tokens=special_tokens
|
120 |
-
)
|
121 |
-
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
|
122 |
-
return fast_tokenizer
|
123 |
-
|
124 |
-
def load_tokenizer():
|
125 |
-
return AutoTokenizer.from_pretrained(config.OUTPUT_REPO + '-it' if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO)
|
126 |
-
|
127 |
-
def get_training_corpus(dataset):
|
128 |
-
for i in range(0, len(dataset['text']), 1000):
|
129 |
-
yield dataset['text'][i : i + 1000]
|
130 |
-
|
131 |
-
def format_prompts(examples, tokenizer, isinst):
|
132 |
-
texts = []
|
133 |
-
for text in examples['text']:
|
134 |
-
if text and len(text.strip()) > 0:
|
135 |
-
if isinst:
|
136 |
-
conversation = []
|
137 |
-
parts = text.split('<|end|>')
|
138 |
-
for i in range(0, len(parts) - 1, 2):
|
139 |
-
prompt = parts[i].replace("<|user|>", "").strip()
|
140 |
-
response = parts[i + 1].replace("<|bot|>", "").strip()
|
141 |
-
conversation.append({"role": "user", "content": prompt})
|
142 |
-
conversation.append({"role": "assistant", "content": response})
|
143 |
-
formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
|
144 |
-
coded_text = tokenizer.code(formatted_conversation)
|
145 |
-
texts.append(coded_text)
|
146 |
-
else:
|
147 |
-
texts.append(tokenizer.bos_token + tokenizer.code(text) + tokenizer.eos_token)
|
148 |
-
else:
|
149 |
-
print('Found empty entry in examples. Moving on..')
|
150 |
-
continue
|
151 |
-
|
152 |
-
if len(texts) == 0:
|
153 |
-
raise ValueError("No valid texts found in examples for formatting.")
|
154 |
-
|
155 |
-
coded_texts = tokenizer.code(texts)
|
156 |
-
return {'text': coded_texts}
|
157 |
-
|
158 |
-
def create_model(tokenizer):
|
159 |
-
model_config = LlamaConfig(
|
160 |
-
vocab_size=tokenizer.vocab_size,
|
161 |
-
hidden_size=config.FACTOR,
|
162 |
-
intermediate_size=config.FACTOR * 4,
|
163 |
-
num_hidden_layers=config.FACTOR // 2 ** 4,
|
164 |
-
num_attention_heads=config.FACTOR // 2 ** 5,
|
165 |
-
max_position_embeddings=config.MAX_SEQ_LENGTH,
|
166 |
-
rms_norm_eps=1e-5,
|
167 |
-
initializer_range=2e-2,
|
168 |
-
use_cache=True,
|
169 |
-
pad_token_id=tokenizer.pad_token_id,
|
170 |
-
bos_token_id=tokenizer.bos_token_id,
|
171 |
-
eos_token_id=tokenizer.eos_token_id,
|
172 |
-
tie_word_embeddings=False,
|
173 |
-
)
|
174 |
-
return LlamaForCausalLM(model_config)
|
175 |
-
|
176 |
-
def load_model():
|
177 |
-
return AutoModelForCausalLM.from_pretrained(config.OUTPUT_REPO + '-it' if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO)
|
178 |
|
179 |
-
def
|
180 |
-
special_tokens = {
|
181 |
-
"bos_token": "<s>",
|
182 |
-
"eos_token": "</s>",
|
183 |
-
"unk_token": "<unk>",
|
184 |
-
"pad_token": "<pad>",
|
185 |
-
"mask_token": "<mask>",
|
186 |
-
"additional_special_tokens": []
|
187 |
-
}
|
188 |
-
if config.INSTRUCT_FINETUNE_BOOL:
|
189 |
-
special_tokens["additional_special_tokens"] = ["<|user|>", "<|bot|>", "<|end|>"]
|
190 |
-
tokenizer.add_special_tokens(special_tokens)
|
191 |
-
|
192 |
-
if config.INSTRUCT_FINETUNE_BOOL:
|
193 |
-
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
|
194 |
-
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
|
195 |
-
|
196 |
-
chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
|
197 |
-
tokenizer.chat_template = chat_template
|
198 |
-
|
199 |
-
tokenizer.code = lambda example: encode_decode(example, tokenizer)
|
200 |
-
|
201 |
-
def update_tokenizer(tokenizer, dataset, batch_size=1000):
|
202 |
-
existing_vocab = tokenizer.get_vocab()
|
203 |
-
oov_tokens = set()
|
204 |
-
|
205 |
-
for i in range(0, len(dataset['text']), batch_size):
|
206 |
-
batch = dataset['text'][i:i + batch_size]
|
207 |
-
|
208 |
-
for text in batch:
|
209 |
-
token_ids = tokenizer.encode(text, add_special_tokens=False)
|
210 |
-
|
211 |
-
for token_id in token_ids:
|
212 |
-
token = tokenizer.decode([token_id])
|
213 |
-
if token.strip() and token not in existing_vocab:
|
214 |
-
oov_tokens.add(token)
|
215 |
-
|
216 |
-
if oov_tokens:
|
217 |
-
num_added = tokenizer.add_tokens(list(oov_tokens))
|
218 |
-
return num_added
|
219 |
-
|
220 |
-
return 0
|
221 |
-
|
222 |
-
def train_model(model, tokenizer, dataset, push, isinst):
|
223 |
args = config.getConfig()
|
224 |
|
225 |
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=config.WEIGHT_DECAY)
|
226 |
scheduler = get_cosine_schedule_with_warmup(
|
227 |
optimizer,
|
228 |
num_warmup_steps=args.warmup_steps,
|
229 |
-
num_training_steps=
|
230 |
)
|
231 |
|
232 |
-
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
|
233 |
-
|
234 |
-
if 'text' not in dataset.column_names:
|
235 |
-
raise ValueError("Dataset transformation failed: 'text' column missing after mapping.")
|
236 |
-
|
237 |
-
print("Mapped dataset sample length:", len(dataset[0]['text']))
|
238 |
-
|
239 |
-
try:
|
240 |
-
test_input = tokenizer(
|
241 |
-
["This is a test input."],
|
242 |
-
return_tensors="pt",
|
243 |
-
padding="max_length",
|
244 |
-
truncation=True,
|
245 |
-
max_length=MAX_SEQ_LENGTH
|
246 |
-
)
|
247 |
-
test_output = model(**test_input)
|
248 |
-
print("Model test output shape:", test_output.logits.shape)
|
249 |
-
except RuntimeError as e:
|
250 |
-
print(f"Error processing test batch: {e}")
|
251 |
-
|
252 |
trainer = SFTTrainer(
|
253 |
model=model,
|
254 |
tokenizer=tokenizer,
|
255 |
args=args,
|
256 |
train_dataset=dataset,
|
257 |
-
# dataset_text_field='text',
|
258 |
-
max_seq_length=config.MAX_SEQ_LENGTH,
|
259 |
optimizers=(optimizer, scheduler)
|
260 |
)
|
261 |
|
262 |
train = trainer.train()
|
263 |
|
264 |
-
trained_model = trainer.model
|
265 |
-
trained_tokenizer = trainer.tokenizer
|
266 |
-
|
267 |
if push:
|
268 |
repo_id = config.OUTPUT_REPO + "-it" if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO
|
269 |
msg = f"Training loss: {train.training_loss:.4f}"
|
270 |
-
|
271 |
-
|
272 |
-
else:
|
273 |
-
trained_model.save_pretrained("model")
|
274 |
-
trained_tokenizer.save_pretrained("tokenizer")
|
275 |
-
|
276 |
-
def main(push_to_hub=True, is_inst_finetune=config.INSTRUCT_FINETUNE_BOOL):
|
277 |
-
print("Loading Data..")
|
278 |
-
dataset = load_data()
|
279 |
-
print("Loaded data.")
|
280 |
-
|
281 |
-
if is_inst_finetune and config.INIT > 0:
|
282 |
-
print("Loading Tokenizer..")
|
283 |
-
tokenizer = load_tokenizer()
|
284 |
-
print("Loaded Tokenizer.")
|
285 |
else:
|
286 |
-
|
287 |
-
|
288 |
-
print("Made Corpus.")
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
|
|
|
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
if config.INIT == 0:
|
299 |
-
print("Adding Special Tokens..")
|
300 |
-
configure_tokenizer(tokenizer)
|
301 |
-
print("Added Tokens.")
|
302 |
-
|
303 |
-
if is_inst_finetune or config.INIT > 0:
|
304 |
-
print("Loading Model..")
|
305 |
-
model = load_model()
|
306 |
-
print("Loaded Model.")
|
307 |
-
else:
|
308 |
-
print("Creating Model..")
|
309 |
-
model = create_model(tokenizer)
|
310 |
-
print("Created Model.")
|
311 |
-
|
312 |
-
print(f"Tokenizer vocabulary size: {len(tokenizer)}")
|
313 |
-
print(f"Special tokens: {tokenizer.special_tokens_map}")
|
314 |
-
|
315 |
-
print("Resizing Token Embeddings..")
|
316 |
-
try:
|
317 |
-
model.resize_token_embeddings(len(tokenizer))
|
318 |
-
except RuntimeError as e:
|
319 |
-
raise RuntimeError(f"Error resizing token embeddings: {e}")
|
320 |
-
print("Resized Embeddings.")
|
321 |
|
322 |
print("Training Model..")
|
323 |
-
train_model(model, tokenizer, dataset, push_to_hub
|
324 |
raise FineError("Trained Model.")
|
325 |
|
326 |
if __name__ == "__main__":
|
327 |
try:
|
328 |
main()
|
329 |
except Exception as e:
|
330 |
-
print(f'{type(e).__name__}: {e}')
|
331 |
-
Space().pause()
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AdamW, get_cosine_schedule_with_warmup
|
3 |
+
from trl import SFTTrainer
|
4 |
+
from datasets import load_from_disk
|
5 |
+
from config import Config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
config = Config()
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
class FineError(Exception):
|
10 |
def __init__(self, message="Script execution has completed."):
|
11 |
self.message = message
|
12 |
super().__init__(self.message)
|
13 |
|
14 |
+
def load_model(tokenizer):
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(config.OUTPUT_REPO + '-it' if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO)
|
16 |
+
model.resize_token_embeddings(len(tokenizer))
|
17 |
+
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
def train_model(model, tokenizer, dataset, push):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
args = config.getConfig()
|
21 |
|
22 |
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=config.WEIGHT_DECAY)
|
23 |
scheduler = get_cosine_schedule_with_warmup(
|
24 |
optimizer,
|
25 |
num_warmup_steps=args.warmup_steps,
|
26 |
+
num_training_steps=args.num_training_steps
|
27 |
)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
trainer = SFTTrainer(
|
30 |
model=model,
|
31 |
tokenizer=tokenizer,
|
32 |
args=args,
|
33 |
train_dataset=dataset,
|
|
|
|
|
34 |
optimizers=(optimizer, scheduler)
|
35 |
)
|
36 |
|
37 |
train = trainer.train()
|
38 |
|
|
|
|
|
|
|
39 |
if push:
|
40 |
repo_id = config.OUTPUT_REPO + "-it" if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO
|
41 |
msg = f"Training loss: {train.training_loss:.4f}"
|
42 |
+
trainer.model.push_to_hub(repo_id, commit_message=msg, force=True)
|
43 |
+
trainer.tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
else:
|
45 |
+
trainer.model.save_pretrained("trained_model")
|
46 |
+
trainer.tokenizer.save_pretrained("trained_tokenizer")
|
|
|
47 |
|
48 |
+
def main(push_to_hub=True):
|
49 |
+
print("Loading Prepared Data..")
|
50 |
+
dataset = load_from_disk("prepared_dataset")
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained("prepared_tokenizer")
|
52 |
+
print("Loaded Prepared Data.")
|
53 |
|
54 |
+
print("Loading Model..")
|
55 |
+
model = load_model(tokenizer)
|
56 |
+
print("Loaded Model.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
print("Training Model..")
|
59 |
+
train_model(model, tokenizer, dataset, push_to_hub)
|
60 |
raise FineError("Trained Model.")
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
try:
|
64 |
main()
|
65 |
except Exception as e:
|
66 |
+
print(f'{type(e).__name__}: {e}')
|
|