Ngaima Sandiman
Initial commit.
685ecb2
raw
history blame
3.28 kB
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
# Copyright 2023 (authors: Feiteng Li)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
import torch.nn as nn
class TokenEmbedding(nn.Module):
def __init__(
self,
dim_model: int,
vocab_size: int,
dropout: float = 0.0,
):
super().__init__()
self.vocab_size = vocab_size
self.dim_model = dim_model
self.dropout = torch.nn.Dropout(p=dropout)
self.word_embeddings = nn.Embedding(self.vocab_size, self.dim_model)
@property
def weight(self) -> torch.Tensor:
return self.word_embeddings.weight
def embedding(self, index: int) -> torch.Tensor:
return self.word_embeddings.weight[index : index + 1]
def forward(self, x: torch.Tensor):
X = self.word_embeddings(x)
X = self.dropout(X)
return X
class SinePositionalEmbedding(nn.Module):
def __init__(
self,
dim_model: int,
dropout: float = 0.0,
scale: bool = False,
alpha: bool = False,
):
super().__init__()
self.dim_model = dim_model
self.x_scale = math.sqrt(dim_model) if scale else 1.0
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
self.dropout = torch.nn.Dropout(p=dropout)
self.reverse = False
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.dim_model)
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(
0, x.size(1), dtype=torch.float32
).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.dim_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.dim_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
def forward(self, x: torch.Tensor) -> torch.Tensor:
self.extend_pe(x)
output = x.unsqueeze(-1) if x.ndim == 2 else x
output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
return self.dropout(output)