Ngaima Sandiman
Initial commit.
685ecb2
raw
history blame
49.8 kB
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/scaling.py
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import logging
import random
import math
from functools import reduce
from itertools import repeat
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn import Embedding as ScaledEmbedding
# from valle.utils import Transpose
class Transpose(nn.Identity):
"""(N, T, D) -> (N, D, T)"""
def forward(self, input: torch.Tensor) -> torch.Tensor:
return input.transpose(1, 2)
class ActivationBalancerFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
scale_factor: Tensor,
sign_factor: Optional[Tensor],
channel_dim: int,
) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
ctx.channel_dim = channel_dim
xgt0 = x > 0
if sign_factor is None:
ctx.save_for_backward(xgt0, scale_factor)
else:
ctx.save_for_backward(xgt0, scale_factor, sign_factor)
return x
@staticmethod
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
if len(ctx.saved_tensors) == 3:
xgt0, scale_factor, sign_factor = ctx.saved_tensors
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
scale_factor = scale_factor.unsqueeze(-1)
sign_factor = sign_factor.unsqueeze(-1)
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
else:
xgt0, scale_factor = ctx.saved_tensors
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
scale_factor = scale_factor.unsqueeze(-1)
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
neg_delta_grad = x_grad.abs() * factor
return (
x_grad - neg_delta_grad,
None,
None,
None,
)
def _compute_scale_factor(
x: Tensor,
channel_dim: int,
min_abs: float,
max_abs: float,
gain_factor: float,
max_factor: float,
) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
if min_abs == 0.0:
below_threshold = 0.0
else:
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
# x_abs)_mean , min_abs.
below_threshold = (
(min_abs - x_abs_mean) * (gain_factor / min_abs)
).clamp(min=0, max=max_factor)
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
min=0, max=max_factor
)
return below_threshold - above_threshold
def _compute_sign_factor(
x: Tensor,
channel_dim: int,
min_positive: float,
max_positive: float,
gain_factor: float,
max_factor: float,
) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
if min_positive == 0.0:
factor1 = 0.0
else:
# 0 if proportion_positive >= min_positive, else can be
# as large as max_factor.
factor1 = (
(min_positive - proportion_positive) * (gain_factor / min_positive)
).clamp_(min=0, max=max_factor)
if max_positive == 1.0:
factor2 = 0.0
else:
# 0 if self.proportion_positive <= max_positive, else can be
# as large as -max_factor.
factor2 = (
(proportion_positive - max_positive)
* (gain_factor / (1.0 - max_positive))
).clamp_(min=0, max=max_factor)
sign_factor = factor1 - factor2
# require min_positive != 0 or max_positive != 1:
assert not isinstance(sign_factor, float)
return sign_factor
class ActivationScaleBalancerFunction(torch.autograd.Function):
"""
This object is used in class ActivationBalancer when the user specified
min_positive=0, max_positive=1, so there are no constraints on the signs
of the activations and only the absolute value has a constraint.
"""
@staticmethod
def forward(
ctx,
x: Tensor,
sign_factor: Tensor,
scale_factor: Tensor,
channel_dim: int,
) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
ctx.channel_dim = channel_dim
xgt0 = x > 0
ctx.save_for_backward(xgt0, sign_factor, scale_factor)
return x
@staticmethod
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
xgt0, sign_factor, scale_factor = ctx.saved_tensors
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
sign_factor = sign_factor.unsqueeze(-1)
scale_factor = scale_factor.unsqueeze(-1)
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
neg_delta_grad = x_grad.abs() * factor
return (
x_grad - neg_delta_grad,
None,
None,
None,
)
class RandomClampFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
min: Optional[float],
max: Optional[float],
prob: float,
reflect: float,
) -> Tensor:
x_clamped = torch.clamp(x, min=min, max=max)
mask = torch.rand_like(x) < prob
ans = torch.where(mask, x_clamped, x)
if x.requires_grad:
ctx.save_for_backward(ans == x)
ctx.reflect = reflect
if reflect != 0.0:
ans = ans * (1.0 + reflect) - (x * reflect)
return ans
@staticmethod
def backward(
ctx, ans_grad: Tensor
) -> Tuple[Tensor, None, None, None, None]:
(is_same,) = ctx.saved_tensors
x_grad = ans_grad * is_same.to(ans_grad.dtype)
reflect = ctx.reflect
if reflect != 0.0:
x_grad = x_grad * (1.0 + reflect) - (ans_grad * reflect)
return x_grad, None, None, None, None
def random_clamp(
x: Tensor,
min: Optional[float] = None,
max: Optional[float] = None,
prob: float = 0.5,
reflect: float = 0.0,
):
return RandomClampFunction.apply(x, min, max, prob, reflect)
def random_cast_to_half(x: Tensor, min_abs: float = 5.0e-06) -> Tensor:
"""
A randomized way of casting a floating point value to half precision.
"""
if x.dtype == torch.float16:
return x
x_abs = x.abs()
is_too_small = x_abs < min_abs
# for elements where is_too_small is true, random_val will contain +-min_abs with
# probability (x.abs() / min_abs), and 0.0 otherwise. [so this preserves expectations,
# for those elements].
random_val = min_abs * x.sign() * (torch.rand_like(x) * min_abs < x_abs)
return torch.where(is_too_small, random_val, x).to(torch.float16)
class RandomGradFunction(torch.autograd.Function):
"""
Does nothing in forward pass; in backward pass, gets rid of very small grads using
randomized approach that preserves expectations (intended to reduce roundoff).
"""
@staticmethod
def forward(ctx, x: Tensor, min_abs: float) -> Tensor:
ctx.min_abs = min_abs
return x
@staticmethod
def backward(ctx, ans_grad: Tensor) -> Tuple[Tensor, None]:
if ans_grad.dtype == torch.float16:
return (
random_cast_to_half(
ans_grad.to(torch.float32), min_abs=ctx.min_abs
),
None,
)
else:
return ans_grad, None
class RandomGrad(torch.nn.Module):
"""
Gets rid of very small gradients using an expectation-preserving method, intended to increase
accuracy of training when using amp (automatic mixed precision)
"""
def __init__(self, min_abs: float = 5.0e-06):
super(RandomGrad, self).__init__()
self.min_abs = min_abs
def forward(self, x: Tensor):
if (
torch.jit.is_scripting()
or not self.training
or torch.jit.is_tracing()
):
return x
else:
return RandomGradFunction.apply(x, self.min_abs)
class SoftmaxFunction(torch.autograd.Function):
"""
Tries to handle half-precision derivatives in a randomized way that should
be more accurate for training than the default behavior.
"""
@staticmethod
def forward(ctx, x: Tensor, dim: int):
ans = x.softmax(dim=dim)
# if x dtype is float16, x.softmax() returns a float32 because
# (presumably) that op does not support float16, and autocast
# is enabled.
if torch.is_autocast_enabled():
ans = ans.to(torch.float16)
ctx.save_for_backward(ans)
ctx.x_dtype = x.dtype
ctx.dim = dim
return ans
@staticmethod
def backward(ctx, ans_grad: Tensor):
(ans,) = ctx.saved_tensors
with torch.cuda.amp.autocast(enabled=False):
ans_grad = ans_grad.to(torch.float32)
ans = ans.to(torch.float32)
x_grad = ans_grad * ans
x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True)
return x_grad, None
def softmax(x: Tensor, dim: int):
if torch.jit.is_scripting() or torch.jit.is_tracing():
return x.softmax(dim)
return SoftmaxFunction.apply(x, dim)
class MaxEigLimiterFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
coeffs: Tensor,
direction: Tensor,
channel_dim: int,
grad_scale: float,
) -> Tensor:
ctx.channel_dim = channel_dim
ctx.grad_scale = grad_scale
ctx.save_for_backward(x.detach(), coeffs.detach(), direction.detach())
return x
@staticmethod
def backward(ctx, x_grad, *args):
with torch.enable_grad():
(x_orig, coeffs, new_direction) = ctx.saved_tensors
x_orig.requires_grad = True
num_channels = x_orig.shape[ctx.channel_dim]
x = x_orig.transpose(ctx.channel_dim, -1).reshape(-1, num_channels)
new_direction.requires_grad = False
x = x - x.mean(dim=0)
x_var = (x ** 2).mean()
x_residual = x - coeffs * new_direction
x_residual_var = (x_residual ** 2).mean()
# `variance_proportion` is the proportion of the variance accounted for
# by the top eigen-direction. This is to be minimized.
variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20)
variance_proportion.backward()
x_orig_grad = x_orig.grad
x_extra_grad = (
x_orig.grad
* ctx.grad_scale
* x_grad.norm()
/ (x_orig_grad.norm() + 1.0e-20)
)
return x_grad + x_extra_grad.detach(), None, None, None, None
class BasicNorm(torch.nn.Module):
"""
This is intended to be a simpler, and hopefully cheaper, replacement for
LayerNorm. The observation this is based on, is that Transformer-type
networks, especially with pre-norm, sometimes seem to set one of the
feature dimensions to a large constant value (e.g. 50), which "defeats"
the LayerNorm because the output magnitude is then not strongly dependent
on the other (useful) features. Presumably the weight and bias of the
LayerNorm are required to allow it to do this.
So the idea is to introduce this large constant value as an explicit
parameter, that takes the role of the "eps" in LayerNorm, so the network
doesn't have to do this trick. We make the "eps" learnable.
Args:
num_channels: the number of channels, e.g. 512.
channel_dim: the axis/dimension corresponding to the channel,
interprted as an offset from the input's ndim if negative.
shis is NOT the num_channels; it should typically be one of
{-2, -1, 0, 1, 2, 3}.
eps: the initial "epsilon" that we add as ballast in:
scale = ((input_vec**2).mean() + epsilon)**-0.5
Note: our epsilon is actually large, but we keep the name
to indicate the connection with conventional LayerNorm.
learn_eps: if true, we learn epsilon; if false, we keep it
at the initial value.
eps_min: float
eps_max: float
"""
def __init__(
self,
num_channels: int,
channel_dim: int = -1, # CAUTION: see documentation.
eps: float = 0.25,
learn_eps: bool = True,
eps_min: float = -3.0,
eps_max: float = 3.0,
) -> None:
super(BasicNorm, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
if learn_eps:
self.eps = nn.Parameter(torch.tensor(eps).log().detach())
else:
self.register_buffer("eps", torch.tensor(eps).log().detach())
self.eps_min = eps_min
self.eps_max = eps_max
def forward(self, x: Tensor) -> Tensor:
assert x.shape[self.channel_dim] == self.num_channels
eps = self.eps
if self.training and random.random() < 0.25:
# with probability 0.25, in training mode, clamp eps between the min
# and max; this will encourage it to learn parameters within the
# allowed range by making parameters that are outside the allowed
# range noisy.
# gradients to allow the parameter to get back into the allowed region if it happens to exit it.
eps = eps.clamp(min=self.eps_min, max=self.eps_max)
scales = (
torch.mean(x ** 2, dim=self.channel_dim, keepdim=True) + eps.exp()
) ** -0.5
return x * scales
def ScaledLinear(*args, initial_scale: float = 1.0, **kwargs) -> nn.Linear:
"""
Behaves like a constructor of a modified version of nn.Linear
that gives an easy way to set the default initial parameter scale.
Args:
Accepts the standard args and kwargs that nn.Linear accepts
e.g. in_features, out_features, bias=False.
initial_scale: you can override this if you want to increase
or decrease the initial magnitude of the module's output
(affects the initialization of weight_scale and bias_scale).
Another option, if you want to do something like this, is
to re-initialize the parameters.
"""
ans = nn.Linear(*args, **kwargs)
with torch.no_grad():
ans.weight[:] *= initial_scale
if ans.bias is not None:
torch.nn.init.uniform_(
ans.bias, -0.1 * initial_scale, 0.1 * initial_scale
)
return ans
def ScaledConv1d(
*args,
initial_scale: float = 1.0,
kernel_size: int = 3,
padding: str = "same",
**kwargs,
) -> nn.Conv1d:
"""
Behaves like a constructor of a modified version of nn.Conv1d
that gives an easy way to set the default initial parameter scale.
Args:
Accepts the standard args and kwargs that nn.Linear accepts
e.g. in_features, out_features, bias=False.
initial_scale: you can override this if you want to increase
or decrease the initial magnitude of the module's output
(affects the initialization of weight_scale and bias_scale).
Another option, if you want to do something like this, is
to re-initialize the parameters.
"""
ans = nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs)
with torch.no_grad():
ans.weight[:] *= initial_scale
if ans.bias is not None:
torch.nn.init.uniform_(
ans.bias, -0.1 * initial_scale, 0.1 * initial_scale
)
return ans
def TransposeScaledConv1d(
*args,
initial_scale: float = 1.0,
kernel_size: int = 3,
padding: str = "same",
**kwargs,
) -> nn.Sequential:
"""
Transpose -> ScaledConv1d
"""
return nn.Sequential(
Transpose(),
ScaledConv1d(
*args,
initial_scale=initial_scale,
kernel_size=kernel_size,
padding=padding,
**kwargs,
),
)
def ScaledConv1dTranspose(
*args,
initial_scale: float = 1.0,
kernel_size: int = 3,
padding: str = "same",
**kwargs,
) -> nn.Sequential:
"""
Transpose -> ScaledConv1d
"""
return nn.Sequential(
ScaledConv1d(
*args,
initial_scale=initial_scale,
kernel_size=kernel_size,
padding=padding,
**kwargs,
),
Transpose(),
)
def TransposeConv1d(
*args, kernel_size: int = 3, padding: str = "same", **kwargs
) -> nn.Sequential:
"""
Transpose -> Conv1d
"""
return nn.Sequential(
Transpose(),
nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
)
def Conv1dTranspose(
*args, kernel_size: int = 3, padding: str = "same", **kwargs
) -> nn.Sequential:
"""
ScaledConv1d -> Transpose
"""
return nn.Sequential(
nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
Transpose(),
)
class SRLinear(nn.Linear):
"""https://arxiv.org/abs/2303.06296
Stabilizing Transformer Training by Preventing Attention Entropy Collapse
"""
def __init__(self, in_features, out_features, bias=True, **kwargs):
super().__init__(in_features, out_features, bias=bias, **kwargs)
self.register_buffer(
"u", nn.functional.normalize(torch.randn(in_features), dim=0)
)
with torch.no_grad():
sigma = self.get_sigma()
self.register_buffer("spectral_norm", sigma)
self.sigma = nn.Parameter(torch.ones(1))
def get_sigma(self):
with torch.no_grad():
u = self.u
v = self.weight.mv(u)
v = nn.functional.normalize(v, dim=0)
u = self.weight.T.mv(v)
u = nn.functional.normalize(u, dim=0)
self.u.data.copy_(u)
return torch.einsum("c,cd,d->", v, self.weight, u)
def get_weight(self):
sigma = self.get_sigma()
if self.training:
self.spectral_norm.data.copy_(sigma)
weight = (self.sigma / sigma) * self.weight
return weight
def forward(self, x):
return nn.functional.linear(x, self.get_weight(), self.bias)
class SRConv1d(SRLinear):
def __init__(
self,
in_features,
out_features,
kernel_size,
stride: int = 1,
padding: str = "same",
bias: bool = True,
**kwargs,
):
in_features = in_features * kernel_size
super().__init__(in_features, out_features, bias=bias, **kwargs)
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
def forward(self, x):
in_features = self.in_features // self.kernel_size
weight = self.get_weight().view(
self.out_features, in_features, self.kernel_size
)
return nn.functional.conv1d(
x, weight, bias=self.bias, stride=self.stride, padding=self.padding
)
def TransposeSRConv1d(
*args, kernel_size: int = 3, padding: str = "same", **kwargs
) -> nn.Sequential:
"""
Transpose -> SRConv1d
"""
return nn.Sequential(
Transpose(),
SRConv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
)
def SRConv1dTranspose(
*args, kernel_size: int = 3, padding: str = "same", **kwargs
) -> nn.Sequential:
"""
SRConv1d -> Transpose
"""
return nn.Sequential(
SRConv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
Transpose(),
)
class ActivationBalancer(torch.nn.Module):
"""
Modifies the backpropped derivatives of a function to try to encourage, for
each channel, that it is positive at least a proportion `threshold` of the
time. It does this by multiplying negative derivative values by up to
(1+max_factor), and positive derivative values by up to (1-max_factor),
interpolated from 1 at the threshold to those extremal values when none
of the inputs are positive.
Args:
num_channels: the number of channels
channel_dim: the dimension/axis corresponding to the channel, e.g.
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
min_positive: the minimum, per channel, of the proportion of the time
that (x > 0), below which we start to modify the derivatives.
max_positive: the maximum, per channel, of the proportion of the time
that (x > 0), above which we start to modify the derivatives.
max_factor: the maximum factor by which we modify the derivatives for
either the sign constraint or the magnitude constraint;
e.g. with max_factor=0.02, the the derivatives would be multiplied by
values in the range [0.98..1.02].
sign_gain_factor: determines the 'gain' with which we increase the
change in gradient once the constraints on min_positive and max_positive
are violated.
scale_gain_factor: determines the 'gain' with which we increase the
change in gradient once the constraints on min_abs and max_abs
are violated.
min_abs: the minimum average-absolute-value difference from the mean
value per channel, which we allow, before we start to modify
the derivatives to prevent this.
max_abs: the maximum average-absolute-value difference from the mean
value per channel, which we allow, before we start to modify
the derivatives to prevent this.
min_prob: determines the minimum probability with which we modify the
gradients for the {min,max}_positive and {min,max}_abs constraints,
on each forward(). This is done randomly to prevent all layers
from doing it at the same time. Early in training we may use
higher probabilities than this; it will decay to this value.
"""
def __init__(
self,
num_channels: int,
channel_dim: int,
min_positive: float = 0.05,
max_positive: float = 0.95,
max_factor: float = 0.04,
sign_gain_factor: float = 0.01,
scale_gain_factor: float = 0.02,
min_abs: float = 0.2,
max_abs: float = 100.0,
min_prob: float = 0.1,
):
super(ActivationBalancer, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
self.min_positive = min_positive
self.max_positive = max_positive
self.max_factor = max_factor
self.min_abs = min_abs
self.max_abs = max_abs
self.min_prob = min_prob
self.sign_gain_factor = sign_gain_factor
self.scale_gain_factor = scale_gain_factor
# count measures how many times the forward() function has been called.
# We occasionally sync this to a tensor called `count`, that exists to
# make sure it is synced to disk when we load and save the model.
self.cpu_count = 0
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
def forward(self, x: Tensor) -> Tensor:
if (
torch.jit.is_scripting()
or not x.requires_grad
or torch.jit.is_tracing()
):
return _no_op(x)
count = self.cpu_count
self.cpu_count += 1
if random.random() < 0.01:
# Occasionally sync self.cpu_count with self.count.
# count affects the decay of 'prob'. don't do this on every iter,
# because syncing with the GPU is slow.
self.cpu_count = max(self.cpu_count, self.count.item())
self.count.fill_(self.cpu_count)
# the prob of doing some work exponentially decreases from 0.5 till it hits
# a floor at min_prob (==0.1, by default)
prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
if random.random() < prob:
sign_gain_factor = 0.5
if self.min_positive != 0.0 or self.max_positive != 1.0:
sign_factor = _compute_sign_factor(
x,
self.channel_dim,
self.min_positive,
self.max_positive,
gain_factor=self.sign_gain_factor / prob,
max_factor=self.max_factor,
)
else:
sign_factor = None
scale_factor = _compute_scale_factor(
x.detach(),
self.channel_dim,
min_abs=self.min_abs,
max_abs=self.max_abs,
gain_factor=self.scale_gain_factor / prob,
max_factor=self.max_factor,
)
return ActivationBalancerFunction.apply(
x,
scale_factor,
sign_factor,
self.channel_dim,
)
else:
return _no_op(x)
def penalize_abs_values_gt(x: Tensor, limit: float, penalty: float) -> Tensor:
"""
Returns x unmodified, but in backprop will put a penalty for the excess of
the absolute values of elements of x over the limit "limit". E.g. if
limit == 10.0, then if x has any values over 10 it will get a penalty.
Caution: the value of this penalty will be affected by grad scaling used
in automatic mixed precision training. For this reasons we use this,
it shouldn't really matter, or may even be helpful; we just use this
to disallow really implausible values of scores to be given to softmax.
"""
x_sign = x.sign()
over_limit = (x.abs() - limit) > 0
# The following is a memory efficient way to penalize the absolute values of
# x that's over the limit. (The memory efficiency comes when you think
# about which items torch needs to cache for the autograd, and which ones it
# can throw away). The numerical value of aux_loss as computed here will
# actually be larger than it should be, by limit * over_limit.sum(), but it
# has the same derivative as the real aux_loss which is penalty * (x.abs() -
# limit).relu().
aux_loss = penalty * ((x_sign * over_limit).to(torch.int8) * x)
# note: we don't do sum() here on aux)_loss, but it's as if we had done
# sum() due to how with_loss() works.
x = with_loss(x, aux_loss)
# you must use x for something, or this will be ineffective.
return x
def _diag(x: Tensor): # like .diag(), but works for tensors with 3 dims.
if x.ndim == 2:
return x.diag()
else:
(batch, dim, dim) = x.shape
x = x.reshape(batch, dim * dim)
x = x[:, :: dim + 1]
assert x.shape == (batch, dim)
return x
def _whitening_metric(x: Tensor, num_groups: int):
"""
Computes the "whitening metric", a value which will be 1.0 if all the eigenvalues of
of the centered feature covariance are the same within each group's covariance matrix
and also between groups.
Args:
x: a Tensor of shape (*, num_channels)
num_groups: the number of groups of channels, a number >=1 that divides num_channels
Returns:
Returns a scalar Tensor that will be 1.0 if the data is "perfectly white" and
greater than 1.0 otherwise.
"""
assert x.dtype != torch.float16
x = x.reshape(-1, x.shape[-1])
(num_frames, num_channels) = x.shape
assert num_channels % num_groups == 0
channels_per_group = num_channels // num_groups
x = x.reshape(num_frames, num_groups, channels_per_group).transpose(0, 1)
# x now has shape (num_groups, num_frames, channels_per_group)
# subtract the mean so we use the centered, not uncentered, covariance.
# My experience has been that when we "mess with the gradients" like this,
# it's better not do anything that tries to move the mean around, because
# that can easily cause instability.
x = x - x.mean(dim=1, keepdim=True)
# x_covar: (num_groups, channels_per_group, channels_per_group)
x_covar = torch.matmul(x.transpose(1, 2), x)
x_covar_mean_diag = _diag(x_covar).mean()
# the following expression is what we'd get if we took the matrix product
# of each covariance and measured the mean of its trace, i.e.
# the same as _diag(torch.matmul(x_covar, x_covar)).mean().
x_covarsq_mean_diag = (x_covar ** 2).sum() / (
num_groups * channels_per_group
)
# this metric will be >= 1.0; the larger it is, the less 'white' the data was.
metric = x_covarsq_mean_diag / (x_covar_mean_diag ** 2 + 1.0e-20)
return metric
class WhiteningPenaltyFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
num_groups: int,
whitening_limit: float,
grad_scale: float,
) -> Tensor:
ctx.save_for_backward(x)
ctx.num_groups = num_groups
ctx.whitening_limit = whitening_limit
ctx.grad_scale = grad_scale
return x
@staticmethod
def backward(ctx, x_grad: Tensor):
(x_orig,) = ctx.saved_tensors
with torch.enable_grad():
with torch.cuda.amp.autocast(enabled=False):
x_detached = x_orig.to(torch.float32).detach()
x_detached.requires_grad = True
metric = _whitening_metric(x_detached, ctx.num_groups)
if random.random() < 0.005 or __name__ == "__main__":
logging.info(
f"Whitening: num_groups={ctx.num_groups}, num_channels={x_orig.shape[-1]}, "
f"metric={metric.item():.2f} vs. limit={ctx.whitening_limit}"
)
(metric - ctx.whitening_limit).relu().backward()
penalty_grad = x_detached.grad
scale = ctx.grad_scale * (
x_grad.to(torch.float32).norm()
/ (penalty_grad.norm() + 1.0e-20)
)
penalty_grad = penalty_grad * scale
return x_grad + penalty_grad.to(x_grad.dtype), None, None, None
class Whiten(nn.Module):
def __init__(
self,
num_groups: int,
whitening_limit: float,
prob: Union[float, Tuple[float, float]],
grad_scale: float,
):
"""
Args:
num_groups: the number of groups to divide the channel dim into before
whitening. We will attempt to make the feature covariance
within each group, after mean subtraction, as "white" as possible,
while having the same trace across all groups.
whitening_limit: a value greater than 1.0, that dictates how much
freedom we have to violate the constraints. 1.0 would mean perfectly
white, with exactly the same trace across groups; larger values
give more freedom. E.g. 2.0.
prob: the probability with which we apply the gradient modification
(also affects the grad scale). May be supplied as a float,
or as a pair (min_prob, max_prob)
grad_scale: determines the scale on the gradient term from this object,
relative to the rest of the gradient on the attention weights.
E.g. 0.02 (you may want to use smaller values than this if prob is large)
"""
super(Whiten, self).__init__()
assert num_groups >= 1
assert whitening_limit >= 1
assert grad_scale >= 0
self.num_groups = num_groups
self.whitening_limit = whitening_limit
if isinstance(prob, float):
assert 0 < prob <= 1
self.prob = prob
else:
(self.min_prob, self.max_prob) = prob
assert 0 < self.min_prob < self.max_prob <= 1
self.prob = self.max_prob
self.grad_scale = grad_scale
def forward(self, x: Tensor) -> Tensor:
"""
In the forward pass, this function just returns the input unmodified.
In the backward pass, it will modify the gradients to ensure that the
distribution in each group has close to (lambda times I) as the covariance
after mean subtraction, with the same lambda across groups.
For whitening_limit > 1, there will be more freedom to violate this
constraint.
Args:
x: the input of shape (*, num_channels)
Returns:
x, unmodified. You should make sure
you use the returned value, or the graph will be freed
and nothing will happen in backprop.
"""
if (
not x.requires_grad
or random.random() > self.prob
or self.grad_scale == 0
):
return _no_op(x)
else:
if hasattr(self, "min_prob") and random.random() < 0.25:
# occasionally switch between min_prob and max_prob, based on whether
# we are above or below the threshold.
if (
_whitening_metric(x.to(torch.float32), self.num_groups)
> self.whitening_limit
):
# there would be a change to the grad.
self.prob = self.max_prob
else:
self.prob = self.min_prob
return WhiteningPenaltyFunction.apply(
x, self.num_groups, self.whitening_limit, self.grad_scale
)
class WithLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, x: Tensor, y: Tensor):
ctx.y_shape = y.shape
return x
@staticmethod
def backward(ctx, ans_grad: Tensor):
return ans_grad, torch.ones(
ctx.y_shape, dtype=ans_grad.dtype, device=ans_grad.device
)
def with_loss(x, y):
if torch.jit.is_scripting() or torch.jit.is_tracing():
return x
# returns x but adds y.sum() to the loss function.
return WithLoss.apply(x, y)
def _no_op(x: Tensor) -> Tensor:
if torch.jit.is_scripting() or torch.jit.is_tracing():
return x
else:
# a no-op function that will have a node in the autograd graph,
# to avoid certain bugs relating to backward hooks
return x.chunk(1, dim=-1)[0]
class Identity(torch.nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return _no_op(x)
class MaxEig(torch.nn.Module):
"""
Modifies the backpropped derivatives of a function to try to discourage
that any given direction in activation space accounts for more than
a specified proportion of the covariance (e.g. 0.2).
Args:
num_channels: the number of channels
channel_dim: the dimension/axis corresponding to the channel, e.g.
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
max_var_per_eig: the maximum proportion of the variance of the
features/channels, after mean subtraction, that can come from
any given eigenvalue.
min_prob: the minimum probability with which we apply this during any invocation
of forward(), assuming last time we applied the constraint it was
not active; supplied for speed.
scale: determines the scale with which we modify the gradients, relative
to the existing / unmodified gradients
"""
def __init__(
self,
num_channels: int,
channel_dim: int,
max_var_per_eig: float = 0.2,
min_prob: float = 0.01,
scale: float = 0.01,
):
super(MaxEig, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
self.scale = scale
assert max_var_per_eig == 0.0 or max_var_per_eig > 1.0 / num_channels
self.max_var_per_eig = max_var_per_eig
# we figure out the dominant direction using the power method: starting with
# a random vector, keep multiplying by the covariance and renormalizing.
with torch.no_grad():
# arbitrary.. would use randn() but want to leave the rest of the model's
# random parameters unchanged for comparison
direction = torch.arange(num_channels).to(torch.float)
direction = direction / direction.norm()
self.register_buffer("max_eig_direction", direction)
self.min_prob = min_prob
# cur_prob is the current probability we'll use to apply the ActivationBalancer.
# We'll regress this towards prob, each tiem we try to apply it and it is not
# active.
self.cur_prob = 1.0
def forward(self, x: Tensor) -> Tensor:
if (
torch.jit.is_scripting()
or self.max_var_per_eig <= 0
or random.random() > self.cur_prob
or torch.jit.is_tracing()
):
return _no_op(x)
with torch.cuda.amp.autocast(enabled=False):
eps = 1.0e-20
orig_x = x
x = x.to(torch.float32)
with torch.no_grad():
x = x.transpose(self.channel_dim, -1).reshape(
-1, self.num_channels
)
x = x - x.mean(dim=0)
new_direction, coeffs = self._find_direction_coeffs(
x, self.max_eig_direction
)
x_var = (x ** 2).mean()
x_residual = x - coeffs * new_direction
x_residual_var = (x_residual ** 2).mean()
# `variance_proportion` is the proportion of the variance accounted for
# by the top eigen-direction.
variance_proportion = (x_var - x_residual_var) / (
x_var + 1.0e-20
)
# ensure new direction is nonzero even if x == 0, by including `direction`.
self._set_direction(
0.1 * self.max_eig_direction + new_direction
)
if random.random() < 0.01 or __name__ == "__main__":
logging.info(
f"variance_proportion = {variance_proportion.item()}, shape={tuple(orig_x.shape)}, cur_prob={self.cur_prob}"
)
if variance_proportion >= self.max_var_per_eig:
# The constraint is active. Note, we should quite rarely
# reach here, only near the beginning of training if we are
# starting to diverge, should this constraint be active.
cur_prob = self.cur_prob
self.cur_prob = (
1.0 # next time, do the update with probability 1.0.
)
return MaxEigLimiterFunction.apply(
orig_x, coeffs, new_direction, self.channel_dim, self.scale
)
else:
# let self.cur_prob exponentially approach self.min_prob, as
# long as the constraint is inactive.
self.cur_prob = 0.75 * self.cur_prob + 0.25 * self.min_prob
return orig_x
def _set_direction(self, direction: Tensor):
"""
Sets self.max_eig_direction to a normalized version of `direction`
"""
direction = direction.detach()
direction = direction / direction.norm()
direction_sum = direction.sum().item()
if direction_sum - direction_sum == 0: # no inf/nan
self.max_eig_direction[:] = direction
else:
logging.info(
f"Warning: sum of direction in MaxEig is {direction_sum}, "
"num_channels={self.num_channels}, channel_dim={self.channel_dim}"
)
def _find_direction_coeffs(
self, x: Tensor, prev_direction: Tensor
) -> Tuple[Tensor, Tensor, Tensor]:
"""
Figure out (an approximation to) the proportion of the variance of a set of
feature vectors that can be attributed to the top eigen-direction.
Args:
x: a Tensor of shape (num_frames, num_channels), with num_frames > 1.
prev_direction: a Tensor of shape (num_channels,), that is our previous estimate
of the top eigen-direction, or a random direction if this is the first
iteration. Does not have to be normalized, but should be nonzero.
Returns: (cur_direction, coeffs), where:
cur_direction: a Tensor of shape (num_channels,) that is the current
estimate of the top eigen-direction.
coeffs: a Tensor of shape (num_frames, 1) that minimizes, or
approximately minimizes, (x - coeffs * cur_direction).norm()
"""
(num_frames, num_channels) = x.shape
assert num_channels > 1 and num_frames > 1
assert prev_direction.shape == (num_channels,)
# `coeffs` are the coefficients of `prev_direction` in x.
# actually represent the coeffs up to a constant positive factor.
coeffs = (x * prev_direction).sum(dim=1, keepdim=True) + 1.0e-10
cur_direction = (x * coeffs).sum(dim=0) / (
(coeffs ** 2).sum() + 1.0e-20
)
return cur_direction, coeffs
class DoubleSwishFunction(torch.autograd.Function):
"""
double_swish(x) = x * torch.sigmoid(x-1)
This is a definition, originally motivated by its close numerical
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
Memory-efficient derivative computation:
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
Now, s'(x) = s(x) * (1-s(x)).
double_swish'(x) = x * s'(x) + s(x).
= x * s(x) * (1-s(x)) + s(x).
= double_swish(x) * (1-s(x)) + s(x)
... so we just need to remember s(x) but not x itself.
"""
@staticmethod
def forward(ctx, x: Tensor) -> Tensor:
requires_grad = x.requires_grad
x_dtype = x.dtype
if x.dtype == torch.float16:
x = x.to(torch.float32)
s = torch.sigmoid(x - 1.0)
y = x * s
if requires_grad:
deriv = y * (1 - s) + s
# notes on derivative of x * sigmoid(x - 1):
# https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
# min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
# max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
# the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
# floors), should be expectation-preserving.
floor = -0.043637
ceil = 1.2
d_scaled = (deriv - floor) * (
255.0 / (ceil - floor)
) + torch.rand_like(deriv)
if __name__ == "__main__":
# for self-testing only.
assert d_scaled.min() >= 0.0
assert d_scaled.max() < 256.0
d_int = d_scaled.to(torch.uint8)
ctx.save_for_backward(d_int)
if x.dtype == torch.float16 or torch.is_autocast_enabled():
y = y.to(torch.float16)
return y
@staticmethod
def backward(ctx, y_grad: Tensor) -> Tensor:
(d,) = ctx.saved_tensors
# the same constants as used in forward pass.
floor = -0.043637
ceil = 1.2
d = d * ((ceil - floor) / 255.0) + floor
return y_grad * d
class DoubleSwish(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
that we approximate closely with x * sigmoid(x-1).
"""
if torch.jit.is_scripting() or torch.jit.is_tracing():
return x * torch.sigmoid(x - 1.0)
return DoubleSwishFunction.apply(x)
def BalancedDoubleSwish(
d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25
) -> nn.Sequential:
"""
ActivationBalancer -> DoubleSwish
"""
balancer = ActivationBalancer(
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob
)
return nn.Sequential(
balancer,
DoubleSwish(),
)
def _test_max_eig():
for proportion in [0.1, 0.5, 10.0]:
logging.info(f"proportion = {proportion}")
x = torch.randn(100, 128)
direction = torch.randn(128)
coeffs = torch.randn(100, 1)
x += proportion * direction * coeffs
x.requires_grad = True
num_channels = 128
m = MaxEig(
num_channels, 1, 0.5, scale=0.1 # channel_dim # max_var_per_eig
) # grad_scale
for _ in range(4):
y = m(x)
y_grad = torch.randn_like(x)
y.backward(gradient=y_grad)
if proportion < 0.2:
assert torch.allclose(x.grad, y_grad, atol=1.0e-02)
elif proportion > 1.0:
assert not torch.allclose(x.grad, y_grad)
def _test_whiten():
for proportion in [0.1, 0.5, 10.0]:
logging.info(f"_test_whiten(): proportion = {proportion}")
x = torch.randn(100, 128)
direction = torch.randn(128)
coeffs = torch.randn(100, 1)
x += proportion * direction * coeffs
x.requires_grad = True
num_channels = 128
m = Whiten(
1, 5.0, prob=1.0, grad_scale=0.1 # num_groups # whitening_limit,
) # grad_scale
for _ in range(4):
y = m(x)
y_grad = torch.randn_like(x)
y.backward(gradient=y_grad)
if proportion < 0.2:
assert torch.allclose(x.grad, y_grad)
elif proportion > 1.0:
assert not torch.allclose(x.grad, y_grad)
def _test_activation_balancer_sign():
probs = torch.arange(0, 1, 0.01)
N = 1000
x = 1.0 * (
(2.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))) - 1.0
)
x = x.detach()
x.requires_grad = True
m = ActivationBalancer(
probs.numel(),
channel_dim=0,
min_positive=0.05,
max_positive=0.95,
max_factor=0.2,
min_abs=0.0,
)
y_grad = torch.sign(torch.randn(probs.numel(), N))
y = m(x)
y.backward(gradient=y_grad)
print("_test_activation_balancer_sign: x = ", x)
print("_test_activation_balancer_sign: y grad = ", y_grad)
print("_test_activation_balancer_sign: x grad = ", x.grad)
def _test_activation_balancer_magnitude():
magnitudes = torch.arange(0, 1, 0.01)
N = 1000
x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(
-1
)
x = x.detach()
x.requires_grad = True
m = ActivationBalancer(
magnitudes.numel(),
channel_dim=0,
min_positive=0.0,
max_positive=1.0,
max_factor=0.2,
min_abs=0.2,
max_abs=0.8,
min_prob=1.0,
)
y_grad = torch.sign(torch.randn(magnitudes.numel(), N))
y = m(x)
y.backward(gradient=y_grad)
print("_test_activation_balancer_magnitude: x = ", x)
print("_test_activation_balancer_magnitude: y grad = ", y_grad)
print("_test_activation_balancer_magnitude: x grad = ", x.grad)
def _test_basic_norm():
num_channels = 128
m = BasicNorm(num_channels=num_channels, channel_dim=1)
x = torch.randn(500, num_channels)
y = m(x)
assert y.shape == x.shape
x_rms = (x ** 2).mean().sqrt()
y_rms = (y ** 2).mean().sqrt()
print("x rms = ", x_rms)
print("y rms = ", y_rms)
assert y_rms < x_rms
assert y_rms > 0.5 * x_rms
def _test_double_swish_deriv():
x = torch.randn(10, 12, dtype=torch.double) * 3.0
x.requires_grad = True
m = DoubleSwish()
tol = (1.2 - (-0.043637)) / 255.0
torch.autograd.gradcheck(m, x, atol=tol)
# for self-test.
x = torch.randn(1000, 1000, dtype=torch.double) * 3.0
x.requires_grad = True
y = m(x)
def _test_softmax():
a = torch.randn(2, 10, dtype=torch.float64)
b = a.clone()
a.requires_grad = True
b.requires_grad = True
a.softmax(dim=1)[:, 0].sum().backward()
print("a grad = ", a.grad)
softmax(b, dim=1)[:, 0].sum().backward()
print("b grad = ", b.grad)
assert torch.allclose(a.grad, b.grad)
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
_test_softmax()
_test_whiten()
_test_max_eig()
_test_activation_balancer_sign()
_test_activation_balancer_magnitude()
_test_basic_norm()
_test_double_swish_deriv()