Ngaima Sandiman
Initial commit.
685ecb2
import io
import os
from pathlib import Path
from tempfile import TemporaryDirectory
import torch
import torchaudio
import random
import numpy as np
from PIL import Image
from urllib.parse import urlparse
from os.path import exists
import re
from num2words import num2words
import uuid
from typing import List, Optional, Dict, Union, Tuple, Iterable
from src.utils.image_utils import is_valid_image
IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5]
IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5]
def is_local(url):
url_parsed = urlparse(url)
if url_parsed.scheme in ("file", ""):
return exists(url_parsed.path)
return False
def replace_numbers_with_words(sentence):
sentence = re.sub(r"(\d+)", r" \1 ", sentence)
def replace_with_words(match):
num = match.group(0)
try:
return num2words(num)
except:
return num
return re.sub(r"\b\d+\b", replace_with_words, sentence)
def save_to_buffer(audio_tensors, codec_audio_sr):
result = torch.cat(audio_tensors, 1)
buffer = io.BytesIO()
torchaudio.save(buffer, result, int(codec_audio_sr), format="wav")
buffer.seek(0)
return buffer.read()
def save_to_file(audio_tensors, codec_audio_sr):
generated_audio_dir = f"media/voicecraft/generated"
Path(generated_audio_dir).mkdir(parents=True, exist_ok=True)
filename = f"{generated_audio_dir}/{str(uuid.uuid4())}.wav"
tensors = torch.cat(audio_tensors, 1)
torchaudio.save(filename, tensors, int(codec_audio_sr), format="wav")
return filename
def split_line_to_sentences(line):
line = line.strip().capitalize()
line = line + "." if line and line[-1] not in (".", "!", "?") else line
sentences = re.findall(r"\w+.*?[.?!]", line.replace("\n", " "), flags=re.S)
return sentences
def seed_everything(seed=1):
os.environ["PYTHONHASHSEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def add_image_tokens_to_prompt(prefix_prompt, bos_token, image_seq_length, image_token):
return f"{image_token * image_seq_length}{bos_token}{prefix_prompt}\n"
def rescale(
image: np.ndarray, scale: float, dtype: np.dtype = np.float32
) -> np.ndarray:
rescaled_image = image * scale
rescaled_image = rescaled_image.astype(dtype)
return rescaled_image
def resize(
image: Image,
size: Tuple[int, int],
resample: Image.Resampling = None,
reducing_gap: Optional[int] = None,
) -> np.ndarray:
height, width = size
resized_image = image.resize(
(width, height), resample=resample, reducing_gap=reducing_gap
)
return resized_image
def normalize(
image: np.ndarray,
mean: Union[float, Iterable[float]],
std: Union[float, Iterable[float]],
) -> np.ndarray:
mean = np.array(mean, dtype=image.dtype)
std = np.array(std, dtype=image.dtype)
image = (image - mean) / std
return image
def process_images(
images: List[Image.Image],
size: Dict[str, int] = None,
resample: Image.Resampling = None,
rescale_factor: float = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
) -> List[np.ndarray]:
height, width = size[0], size[1]
images = [
resize(image=image, size=(height, width), resample=resample) for image in images
]
# Convert each image to a numpy array
images = [np.array(image) for image in images]
# Rescale the pixel values to be in the range [0, 1]
images = [rescale(image, scale=rescale_factor) for image in images]
# Normalize the images to have mean 0 and standard deviation 1
images = [normalize(image, mean=image_mean, std=image_std) for image in images]
# Move the channel dimension to the first dimension. The model expects images in the format [Channel, Height, Width]
images = [image.transpose(2, 0, 1) for image in images]
return images
def sample_top_p(probs: torch.Tensor, p: float):
# (B, vocab_size)
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
# (B, vocab_size)
probs_sum = torch.cumsum(probs_sort, dim=-1)
# (B, vocab_size)
# (Substracting "probs_sort" shifts the cumulative sum by 1 position to the right before masking)
mask = probs_sum - probs_sort > p
# Zero out all the probabilities of tokens that are not selected by the Top P
probs_sort[mask] = 0.0
# Redistribute the probabilities so that they sum up to 1.
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
# Sample a token (its index) from the top p distribution
next_token = torch.multinomial(probs_sort, num_samples=1)
# Get the token position in the vocabulary corresponding to the sampled index
next_token = torch.gather(probs_idx, -1, next_token)
return next_token
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
"""
Args:
lengths:
A 1-D tensor containing sentence lengths.
max_len:
The length of masks.
Returns:
Return a 2-D bool tensor, where masked positions
are filled with `True` and non-masked positions are
filled with `False`.
>>> lengths = torch.tensor([1, 3, 2, 5])
>>> make_pad_mask(lengths)
tensor([[False, True, True, True, True],
[False, False, False, True, True],
[False, False, True, True, True],
[False, False, False, False, False]])
"""
assert lengths.ndim == 1, lengths.ndim
max_len = max(max_len, lengths.max())
n = lengths.size(0)
seq_range = torch.arange(0, max_len, device=lengths.device)
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
return expaned_lengths >= lengths.unsqueeze(-1)
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
min_dtype: float,
cache_position: torch.Tensor,
batch_size: int,
is_training: bool = False,
token_type_ids: torch.Tensor = None,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
min_dtype (`float`):
The minimum value representable with the dtype `dtype`.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
is_training (`bool`):
Whether the model is in training mode or in inference. The condition is checked by presence/absence of `token_type_ids/labels`
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length),
fill_value=min_dtype,
dtype=dtype,
device=device,
)
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
if sequence_length != 1:
if is_training:
causal_mask = torch.triu(causal_mask, diagonal=1)
else:
causal_mask[:, :sequence_length] = 0.0
causal_mask *= torch.arange(
target_length, device=cache_position.device
) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = (
causal_mask.clone()
) # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[
:, None, None, :
].to(causal_mask.device)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[
:, :, :, :mask_length
].masked_fill(padding_mask, min_dtype)
# we are training thus we need to create a full mask on the image + prefix but causal on suffix
if is_training:
causal_mask[:, :, :, :mask_length] = causal_mask[
:, :, :, :mask_length
].masked_fill(
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0
)
return causal_mask
# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
return isinstance(val, str) and val.startswith("http")
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
return is_url(elem) or is_valid_image(elem)
def _is_str_or_image(elem):
return isinstance(elem, (str)) or is_image_or_image_url(elem)
def generate_partial_autoregressive_mask(sz, start, end):
mask = torch.zeros(sz, sz).bool()
mask[start:end, start:end] = torch.triu(
torch.ones(end - start, end - start, dtype=torch.bool), diagonal=1
)
mask[:start, start:end] = True
mask[end:, start:end] = True
return mask
def build_string_from_input(prompt, bos_token, image_seq_len, image_token, num_images):
return f"{image_token * image_seq_len * num_images}{bos_token}{prompt}\n"
def is_torchdynamo_compiling():
try:
import torch
return torch.compiler.is_compiling()
except Exception:
try:
import torch._dynamo as dynamo # noqa: F401
return dynamo.is_compiling()
except Exception:
return False